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Context

For public key cryptography, we need hard algorithmic problems

What does hard mean?
 we don't know any polynomial time algorithm that solves the problem

Examples:

I Factoring

I Discrete logarithm
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Foundation of public key cryptography

Cryptographic primitives (public key)

public key
encryption

signature
homomorphic
encryption

. . .

Supposedly intractable algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .
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Lattices
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Lattices

• • • • • • • • • • • • • • •
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•
0

L

I L = {Bx | x ∈ Zn} is a lattice

I B ∈ GLn(R) is a basis

I n is the dimension of L

I | det(B)| =: Vol(L) is the volume of L (does not depend on the basis B)

I in this talk Vol(L) = 1 always
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Algorithmic problems

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •
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• • • • • • • • • • • • • • •

•
0

L

v

γ-HSVP

• t

•s
γ-CVP

γ-HSVP
(Hermite Shortest Vector Problem)

Find v ∈ L such that ‖v‖2 ≤ γ

γ-CVP
(Closest Vector Problem)

Given t ∈ Rn, �nd s ∈ L such that
‖t − s‖2 ≤ γ

(input: a basis of L)
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Hardness of HSVP and CVP

γ-HSVP and γ-CVP are hard to solve

if the input is a bad basis of L

if γ = poly(n)

in the worst case
I we don't have a polynomial time algorithm that works for all lattices

Remark: if we have a good basis of L, then they become easy
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Public key encryption from lattices

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Bs

Bp

•x

Enc(0)

Enc(1)
•
v

pk = (Bp, x)
sk = Bs

message: m ∈ {0, 1}

Encryption(m, pk):

I sample random v ∈ L

I sample small e ∈ Rn

I return c = v + e +m · x

Decryption(c , sk):

I �nd w ∈ L closest to c

I if c is very close to w ,
return m = 0

I otherwise return m = 1
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Summary (so far)

I we need hard algorithmic problems for cryptography

I γ-HSVP is such a hard problem

From now on, we focus on γ-HSVP

γ-HSVP: given a bad basis of a lattice L (with vol(L) = 1), �nd v ∈ L such
that ‖v‖2 ≤ γ
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Ideal lattices
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Why?

Motivation

Schemes using lattices are usually not e�cient
(storage: n2, matrix-vector mult: n2)

⇒ improve e�ciency using ideal lattices

Ma =


a1 −an · · · −a2
a2 a1 · · · −a3
...

. . .
. . .

...
an an−1 . . . a1


basis of a special case of

ideal lattice
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Some de�nitions

Notation

K = Q[X ]/(X n + 1), with n = 2k (or any number �eld)

OK = Z[X ]/(X n + 1)

KR = K ⊗Q R = R[X ]/(X n + 1)

I integral ideal: a ⊆ OK

I oriented replete ideal: I := α · a ⊂ KR, with α ∈ KR and a ⊆ OK

(e.g., I =
√
2 · 〈3〉 = {

√
2 · 3 · x | x ∈ Z} ⊂ R)

From now on:

I ideal := oriented replete ideal
I I is an ideal
I N (I ) = 1
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Why is I a lattice?

OK is a lattice

σ : OK = Z[X ]/(X n + 1) → Cn

r(X ) 7→ (r(α1), r(α2), . . . , r(αn)),

where α1, . . . , αn are the roots of X n + 1 in C

{
σ(I ) ⊆ σ(OK ) ' Zn

stable by `+' and `−'
⇒ ideal lattice

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

X

1

〈1+ X 〉

OK
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γ-ideal-HSVP

γ-ideal-HSVP = γ-HSVP restricted to ideal lattices

γ-ideal-HSVP: given a basis of an ideal lattice σ(I ) (with N (I ) = 1) , �nd
x ∈ I such that ‖σ(x)‖2 ≤ γ.

This is still a hard problem

if the input basis of σ(I ) is bad

if γ = poly(d)

in the worst case
(no poly time algorithm that works for all ideal lattices)
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I we need hard algorithmic problems for cryptography

I γ-HSVP is a hard problem

I γ-HSVP restricted to ideal lattices is still a hard problem

From now on, we focus on γ-ideal-HSVP

γ-ideal-HSVP: given a bad basis of an ideal lattice σ(I ) (with N (I ) = 1) ,
�nd x ∈ I such that ‖σ(x)‖2 ≤ γ.

Alice Pellet-Mary Self-reducibility of ideal-SVP 14/10/2021 15 / 21



Average-case hardness
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Worst-case hardness

γ-ideal-HSVP is hard in the worst case:

I we don't have a polynomial time algorithm that works for all ideals

I but maybe most of the ideals are easy

How do we generate ideals I for which γ-ideal-HSVP is hard?

(this is needed for crypto)
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Our result

Theorem [BDPW20]

There is a distribution D over ideal lattices such that

solving γ-ideal-HSVP in I with non-negligible probability when I ← D
⇒ solving γ′-ideal-HSVP in all ideals I

with γ′ =
√
d · γ

γ-ideal-HSVP is hard on average.

Remark. D is e�ciently samplable.

We can sample hard ideal lattices for crypto

(very small probability that the sampled ideal is an easy one)
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Techniques of the proof
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Conclusion
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Conclusion

Cryptography needs algorithmic problems that are hard on average

I ideal-HSVP is believed to be hard in the worst case

I we show that if ideal-HSVP is hard in the worst-case, then it is also
hard on average.

I can be used for crypto

I a worst-case to average-case reduction was already proven in [Gen10]
I requires a quantum computer
I worse loss γ → γ′

I di�erent distribution D and di�erent proof

Thank you

[Gen10] Gentry. Toward basing fully homomorphic encryption on worst-case hardness. Crypto
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