On the hardness of the NTRU problem

Alice Pellet-Mary ${ }^{1}$ and Damien Stehlé ${ }^{2}$

${ }^{1}$ CNRS and Université de Bordeaux, ${ }^{2}$ ENS de Lyon
Aric Seminar, Lyon
https://eprint.iacr.org/2021/821.pdf

NTRU

Algorithmic problem based on lattices

- post-quantum
- efficient
- used in Falcon and NTRU / NTRUPrime (NIST finalists)
- old (for lattice-based crypto)

NTRU

Algorithmic problem based on lattices

- post-quantum
- efficient
- used in Falcon and NTRU / NTRUPrime (NIST finalists)
- old (for lattice-based crypto)

Definition (informal)

An NTRU instance is

$$
h=f \cdot g^{-1} \bmod q
$$

where $f, g \in \mathbb{Z}$ and $|f|,|g| \ll \sqrt{q}$.
Decision-NTRU: Distinguish $h=f \cdot g^{-1} \bmod q$ from h uniform
Search-NTRU: Recover (f, g) from h.

RLWE

Another lattice-based algorithmic problem

- post-quantum
- efficient
- used in NewHope (NIST round 2)

NTRU vs RLWE

- both are efficient
- both are versatile (but RLWE a bit more)
- NTRU is older

NTRU vs RLWE

- both are efficient
- both are versatile (but RLWE a bit more)
- NTRU is older
- RLWE has better security guarantees

Our result

Our result

Lattices and ideals

Lattices

Shortest vector problem

SVP : Shortest Vector Problem

Shortest vector problem

SVP : Shortest Vector Problem
Supposedly hard to solve when n is large

- even with a quantum computer
- even for some structured lattices (e.g., ideal lattices)

Unique shortest vector problem

L

uSVP : unique Shortest Vector Problem

$$
\mathrm{uSVP}=\mathrm{SVP} \text { restricted to lattices with } \lambda_{1} \ll \lambda_{2}
$$

Ideal lattices

- $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ with $n=2^{k}($ or $R=\mathbb{Z})$
- $K=\mathbb{Q}[X] /\left(X^{n}+1\right)($ or $K=\mathbb{Q})$

Ideal lattices

- $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ with $n=2^{k}($ or $R=\mathbb{Z})$
- $K=\mathbb{Q}[X] /\left(X^{n}+1\right)($ or $K=\mathbb{Q})$
(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
(e . g .,\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\})
$$

Ideal lattices

$$
\begin{aligned}
& \text { - } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \text { with } n=2^{k}(\text { or } R=\mathbb{Z}) \\
& \text { - } K=\mathbb{Q}[X] /\left(X^{n}+1\right)(\text { or } K=\mathbb{Q})
\end{aligned}
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text {) }
$$

Embedding:

$$
\begin{aligned}
\sigma: \quad K=\mathbb{Q}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{Q}^{n} \\
r=\sum_{i=0}^{n-1} r_{i} X^{i} & \mapsto\left(r_{0}, \cdots, r_{n-1}\right)
\end{aligned}
$$

Ideal lattices

$$
\begin{aligned}
& \text { - } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \text { with } n=2^{k}(\text { or } R=\mathbb{Z}) \\
& \text { - } K=\mathbb{Q}[X] /\left(X^{n}+1\right)(\text { or } K=\mathbb{Q})
\end{aligned}
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text {) }
$$

Embedding:

$$
\begin{aligned}
\sigma: \quad K=\mathbb{Q}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{Q}^{n} \\
r=\sum_{i=0}^{n-1} r_{i} X^{i} & \mapsto\left(r_{0}, \cdots, r_{n-1}\right)
\end{aligned}
$$

Ideal lattice: $\sigma(\langle z\rangle) \subset \mathbb{Q}^{n}$ is a lattice

$$
\begin{array}{ccccccc}
- \\
-6 & -4 & -2 & 0 & 2 & 4 & 6
\end{array}
$$

Ideal lattices

$$
\begin{aligned}
& \text { - } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \text { with } n=2^{k}(\text { or } R=\mathbb{Z}) \\
& \text { - } K=\mathbb{Q}[X] /\left(X^{n}+1\right)(\text { or } K=\mathbb{Q})
\end{aligned}
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text {) }
$$

Embedding:

$$
\begin{aligned}
\sigma: \quad K=\mathbb{Q}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{Q}^{n} \\
r=\sum_{i=0}^{n-1} r_{i} X^{i} & \mapsto\left(r_{0}, \cdots, r_{n-1}\right)
\end{aligned}
$$

Ideal lattice: $\sigma(\langle z\rangle) \subset \mathbb{Q}^{n}$ is a lattice

ideal-SVP: Given $\langle z\rangle$, find $r z \in\langle z\rangle$ such that $\|\sigma(r z)\|$ is small

The different NTRU problems

NTRU instances

$R_{q}:=R /(q R)$
NTRU instance
A (γ, q)-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma} \quad$ (if $y=\sum_{i=0}^{n-1} y_{i} X^{i} \in R$, then $\|y\|=\sqrt{\sum_{i} y_{i}^{2}}$)

The pair (f, g) is a trapdoor for h.

NTRU instances

$R_{q}:=R /(q R)$
NTRU instance
A (γ, q)-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma} \quad$ (if $y=\sum_{i=0}^{n-1} y_{i} x^{i} \in R$, then $\|y\|=\sqrt{\sum_{i} y_{i}^{2}}$)

The pair (f, g) is a trapdoor for h.

Claim: if (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same h,

$$
\left.\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad \text { (division performed in } K\right)
$$

Decisional NTRU problem

dNTRU

The (γ, q)-decisional NTRU problem ((γ, q)-dNTRU) asks, given $h \in R_{q}$, to decide whether

- $h \leftarrow \mathcal{D}$ where \mathcal{D} is a distribution over (γ, q)-NTRU instances
- $h \leftarrow \mathcal{U}\left(R_{q}\right)$

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The (γ, q)-search NTRU vector problem $\left((\gamma, q)\right.$-NTRU ${ }_{\text {vec }}$) asks, given a (γ, q)-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The (γ, q)-search NTRU vector problem $\left((\gamma, q)\right.$-NTRU $\left.{ }_{\text {vec }}\right)$ asks, given a (γ, q)-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$

NTRU ${ }_{\text {mod }}$

The (γ, q)-search NTRU module problem ((γ, q)-NTRU $\mathrm{Nod}_{\text {mod }}$) asks, given a (γ, q)-NTRU instance h, to recover h_{K}. (Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The (γ, q)-search NTRU vector problem $\left((\gamma, q)\right.$-NTRU ${ }_{\text {vec }}$) asks, given a (γ, q)-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$

NTRU $\mathrm{m}_{\text {mod }}$

The (γ, q)-search NTRU module problem ((γ, q)-NTRU $\mathrm{Nod}_{\mathrm{m}}$) asks, given a (γ, q)-NTRU instance h, to recover h_{K}.
(Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))
\Leftrightarrow recover $(\alpha f, \alpha g)$ for any $\alpha \in K$
(The two problems exist in worst-case and average-case variants)

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

- if $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma \rightsquigarrow(g, f)^{T} \in \Lambda_{h}$

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

- if $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma \rightsquigarrow(g, f)^{T} \in \Lambda_{h}$

$$
\left.\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \sqrt{q} / \gamma \ll \lambda_{2}\left(\Lambda_{h}\right)\right) \approx \sqrt{q} \cdot \gamma
$$

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$
Λ_{h} has a unique shortest vector if h is NTRU

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

- if $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma \rightsquigarrow(g, f)^{T} \in \Lambda_{h}$

$$
\left.\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \sqrt{q} / \gamma \ll \lambda_{2}\left(\Lambda_{h}\right)\right) \approx \sqrt{q} \cdot \gamma
$$

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$
Λ_{h} has a unique shortest vector if h is NTRU

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

- if $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma \rightsquigarrow(g, f)^{T} \in \Lambda_{h}$

$$
\left.\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \sqrt{q} / \gamma \ll \lambda_{2}\left(\Lambda_{h}\right)\right) \approx \sqrt{q} \cdot \gamma
$$

NTRU $_{\text {vec }}:$ recover $(f, g) \leftrightarrow$ find a shortest vector in Λ_{h}

NTRU is a (module) lattice problem

NTRU lattice: For $h \in R$, define Λ_{h} (module) lattice with basis

$$
B_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

Properties

- if $h \leftarrow \mathcal{U}\left(R_{q}\right)$
Λ_{h} has a unique shortest vector if h is NTRU

$$
\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \lambda_{2}\left(\Lambda_{h}\right) \approx \sqrt{q}
$$

- if $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma \rightsquigarrow(g, f)^{T} \in \Lambda_{h}$

$$
\left.\Rightarrow \lambda_{1}\left(\Lambda_{h}\right) \approx \sqrt{q} / \gamma \ll \lambda_{2}\left(\Lambda_{h}\right)\right) \approx \sqrt{q} \cdot \gamma
$$

NTRU $_{\text {vec }}:$ recover $(f, g) \leftrightarrow$ find a shortest vector in Λ_{h}
NTRU $_{\text {mod }}$: recover $\alpha \cdot(f, g) \leftrightarrow$ find the direction where Λ_{h} is dense

What we know about NTRU

Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$

[^0]
Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[Pei16] dNTRU \leq RLWE
[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.

Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[Pei16] dNTRU \leq RLWE

Attacks: (polynomial time)
[LLL82] \quad dNTRU, NTRU mod broken if $\gamma \geq 2^{n}$

Previous works

Reductions:

[SS11, WW18]
[Pei16] $\quad \mathrm{dNTRU} \leq$ RLWE
If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$

Attacks: (polynomial time)
[LLL82] \quad dNTRU, NTRU mod broken if $\gamma \geq 2^{n}$
[ABD16, CJL16] dNTRU, NTRU ${ }_{\text {mod }}$ broken if $(\log q)^{2} \geq n \cdot \log \frac{\sqrt{q}}{\gamma}$
[KF17]
(e.g., $q \approx 2^{\sqrt{n}}$ and $\gamma=\sqrt{q} / \operatorname{poly}(n)$)

[^1]
Our results (with more details)

the reductions only work for certain distributions of NTRU instances

Our results (with more details)

the reductions only work for certain distributions of NTRU instances

Techniques

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of $/$

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \\
& \Leftrightarrow g \cdot \frac{q}{z}=q r \\
& \Leftrightarrow g \cdot h=f \bmod q
\end{aligned}
$$

- $h=q / z, f=0$
- $\|f\|,\|g\|$ small

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=q / z, f=0$
- $\|f\|,\|g\|$ small

Not an NTRU instance ($h \in K$ is not in R_{q})

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \quad(r \in R) \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot\left\lfloor\frac{q}{z}\right\rceil=-g \cdot\left\{\frac{q}{z}\right\} \bmod q \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=\lfloor q / z\rceil, f=-g\{q / z\}$
- $\|f\| \approx\|g\|$ small

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \quad(r \in R) \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot\left|\frac{q}{z}\right|=-g \cdot\left\{\frac{q}{z}\right\} \bmod q \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=\lfloor q / z\rceil, f=-g\{q / z\}$
- $\|f\| \approx\|g\|$ small

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$ (2)

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from /
- any short $g \in I$ provides a trapdoor (f, g) for h

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}(2)$

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from $/$
- any short $g \in I$ provides a trapdoor (f, g) for h

What we need to conclude the reduction:

- any trapdoor $\left(f^{\prime}, g^{\prime}\right)$ for h is such that $g^{\prime} \in I$
- g^{\prime} solution to ideal-SVP in I

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$ (2)

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from $/$
- any short $g \in I$ provides a trapdoor (f, g) for h

What we need to conclude the reduction:

- any trapdoor $\left(f^{\prime}, g^{\prime}\right)$ for h is such that $g^{\prime} \in I$
- g^{\prime} solution to ideal-SVP in I

And for non principal ideals?

- $I=R \cap\langle z\rangle$ and z easily computed
- everything still works with this z

Techniques

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES if $h=f / g \bmod q$, with f, g small $(\leq B)$
- no otherwise

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES if $h=f / g \bmod q$, with f, g small $(\leq B)$
- no otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES if $h=f / g \bmod q$, with f, g small $(\leq B)$
- no otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not
\Rightarrow we can choose x and y
\Rightarrow we can modify the coordinates one by one

From NTRU $\mathrm{Nod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

From NTRU $\mathrm{mod}_{\text {to }}$ to dNTRU (2)

Simplified problem
$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not.
Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)

From NTRU $\mathrm{Nod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not.
Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)

Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0} g=B$
- (Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says no)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B$

From NTRU $\mathrm{Nod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not.
Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)

Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0} g=B$
- (Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says no)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B$
- Solve for f / g

More technical details

We do not have a perfect oracle

- need to handle distributions
- use the "oracle hidden center" framework [PRS17]

Conclusion

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate $\mathrm{NTRU}_{\text {mod }}$ and ideal-SVP?
- maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
- for instance, uSVP in modules of rank-2?

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate $\mathrm{NTRU}_{\text {mod }}$ and ideal-SVP?
- maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
- for instance, uSVP in modules of rank-2?

Thank you

[^0]: [SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

[^1]: [ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto.
 [CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.
 [KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

