
Rigorous computation of class group and unit group

Koen de Boer1 Alice Pellet-Mary2 Benjamin Wesolowski2

1 CWI and Leiden university 2 CNRS and Bordeaux university

Lfant seminar, Bordeaux

Alice Pellet-Mary Rigorous class group and units 21/05/22 1 / 26

Main result

We describe an algorithm that computes the class group and unit group

I in any number �eld K (with discriminant ∆K and degree n)

I runs in expected subexponential time L∆K
(1/2) + Lnn(2/3)

(and polynomial in the residue ρK of the Dedekind zeta function at 1)

I is provably correct (assuming ERH)

Alice Pellet-Mary Rigorous class group and units 21/05/22 2 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[HM89] Hafner, McCurley. A rigorous subexponential algorithm for computation of class groups. Journal of the

American mathematical society.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[Buc88] Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic

number �elds. Séminaire de théorie des nombres.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[BF14] Biasse, Fieker. Subexponential class group and unit group computation in large degree number �elds. LMS

Journal of Computation and Mathematics.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[Gel17] Gélin. Class group computations in number �elds and applications to cryptology. PhD thesis.

[BEF+17] Biasse, Espitau, Fouque, Gélin, Kirchner. Computing generator in cyclotomic integer rings. Eurocrypt.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal

ideal problem in arbitrary degree number �elds. SODA.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

History

Notation: Lx(α) = exp
(
O(log(x)α · log log(x)1−α)

)
Number �elds Complexity Non heuristic

[HM89] quadratic imaginary L∆K
(1/2) 3

[Buc88] �xed degree n L∆K
(1/2) 7

[BF14] arbitrary degree n L∆K
(2/3) 7

[BF14,Gel17] speci�c de�ning as small as 7

[BEF+17] polynomial L∆K
(1/3)

[BS16] arbitrary degree n quantum poly 3

This work arbitrary degree n ρK (L∆K (1/2) + Lnn (2/3)) 3

(all algorithms assume ERH)

[BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal

ideal problem in arbitrary degree number �elds. SODA.

Alice Pellet-Mary Rigorous class group and units 21/05/22 3 / 26

S-units

Notations:

S is a �nite set of prime ideals of OK

Log : K → Rn is the logarithmic embedding
(Log(x) = (log |σ1(x)|, · · · , log |σn(x)|), with σi the complex embeddings of K)

De�nition

The Log-S-unit lattice is

ΛS :=
{(

Log(x), (−np)p∈S
) ∣∣∣ xOK =

∏
p∈S

pnp
}
⊂ Rn × Z|S|

Computing S-units = computing a basis of ΛS

Alice Pellet-Mary Rigorous class group and units 21/05/22 4 / 26

S-units

Notations:

S is a �nite set of prime ideals of OK

Log : K → Rn is the logarithmic embedding
(Log(x) = (log |σ1(x)|, · · · , log |σn(x)|), with σi the complex embeddings of K)

De�nition

The Log-S-unit lattice is

ΛS :=
{(

Log(x), (−np)p∈S
) ∣∣∣ xOK =

∏
p∈S

pnp
}
⊂ Rn × Z|S|

Computing S-units = computing a basis of ΛS

Alice Pellet-Mary Rigorous class group and units 21/05/22 4 / 26

S-units

Notations:

S is a �nite set of prime ideals of OK

Log : K → Rn is the logarithmic embedding
(Log(x) = (log |σ1(x)|, · · · , log |σn(x)|), with σi the complex embeddings of K)

De�nition

The Log-S-unit lattice is

ΛS :=
{(

Log(x), (−np)p∈S
) ∣∣∣ xOK =

∏
p∈S

pnp
}
⊂ Rn × Z|S|

Computing S-units = computing a basis of ΛS

Alice Pellet-Mary Rigorous class group and units 21/05/22 4 / 26

Theorem and applications

Theorem

Assuming ERH, there is a probabilistic algorithm which computes ΛS in
expected time polynomial in its input length, in ρK , in L∆K

(1/2) and in
Lnn(2/3).

Reminder: ρK is the residue at 1 of ζK

Applications: we can also compute

unit group (S = ∅)

class-group (S generates ClK)

generators of principal ideals

class-group discrete logarithms

Alice Pellet-Mary Rigorous class group and units 21/05/22 5 / 26

Theorem and applications

Theorem

Assuming ERH, there is a probabilistic algorithm which computes ΛS in
expected time polynomial in its input length, in ρK , in L∆K

(1/2) and in
Lnn(2/3).

Reminder: ρK is the residue at 1 of ζK

Applications: we can also compute

unit group (S = ∅)

class-group (S generates ClK)

generators of principal ideals

class-group discrete logarithms

Alice Pellet-Mary Rigorous class group and units 21/05/22 5 / 26

Outline of the talk

1 Heuristic algorithms

2 Removing the �rst heuristic

3 Removing the second heuristic

Alice Pellet-Mary Rigorous class group and units 21/05/22 6 / 26

Computing a vector of ΛS

De�nition: S = {prime p | N (p) ≤ B} (for some B to be determined)

Algorithm SampleVector

1: repeat

2: Sample random x ∈ OK

3: until xOK =
∏

p∈S p
np for some np ∈ Z

4: return
(

Log(x), (−np)p
)

Correctness: 3

Complexity: O
(
Tsample · p−1smooth

· |S|
)

I Tsample: time to sample x

I psmooth: probability that xOK is smooth

I |S| = O(B): time to test smoothness

Alice Pellet-Mary Rigorous class group and units 21/05/22 7 / 26

Computing a vector of ΛS

De�nition: S = {prime p | N (p) ≤ B} (for some B to be determined)

Algorithm SampleVector

1: repeat

2: Sample random x ∈ OK

3: until xOK =
∏

p∈S p
np for some np ∈ Z

4: return
(

Log(x), (−np)p
)

Correctness: 3

Complexity: O
(
Tsample · p−1smooth

· |S|
)

I Tsample: time to sample x

I psmooth: probability that xOK is smooth

I |S| = O(B): time to test smoothness

Alice Pellet-Mary Rigorous class group and units 21/05/22 7 / 26

Computing a vector of ΛS

De�nition: S = {prime p | N (p) ≤ B} (for some B to be determined)

Algorithm SampleVector

1: repeat

2: Sample random x ∈ OK

3: until xOK =
∏

p∈S p
np for some np ∈ Z

4: return
(

Log(x), (−np)p
)

Correctness: 3

Complexity: O
(
Tsample · p−1smooth

· |S|
)

I Tsample: time to sample x

I psmooth: probability that xOK is smooth

I |S| = O(B): time to test smoothness

Alice Pellet-Mary Rigorous class group and units 21/05/22 7 / 26

Computing a vector of ΛS

De�nition: S = {prime p | N (p) ≤ B} (for some B to be determined)

Algorithm SampleVector

1: repeat

2: Sample random x ∈ OK

3: until xOK =
∏

p∈S p
np for some np ∈ Z

4: return
(

Log(x), (−np)p
)

Correctness: 3

Complexity: O
(
Tsample · p−1smooth

· |S|
)

I Tsample: time to sample x

I psmooth: probability that xOK is smooth

I |S| = O(B): time to test smoothness

Alice Pellet-Mary Rigorous class group and units 21/05/22 7 / 26

Computing a vector of ΛS

De�nition: S = {prime p | N (p) ≤ B} (for some B to be determined)

Algorithm SampleVector

1: repeat

2: Sample random x ∈ OK

3: until xOK =
∏

p∈S p
np for some np ∈ Z

4: return
(

Log(x), (−np)p
)

Correctness: 3

Complexity: O
(
Tsample · p−1smooth

· |S|
)

I Tsample: time to sample x

I psmooth: probability that xOK is smooth

I |S| = O(B): time to test smoothness

Alice Pellet-Mary Rigorous class group and units 21/05/22 7 / 26

How to sample x? � Buchmann

Buchmann:

I sample random ideal I =
∏

p∈S p
mp

I x = Shortest_Vector(I)

xOK smooth ⇔ xI−1 smooth
(⇒ the smaller N (xI−1) the better)

Complexity: 2O(n) (for Shortest_Vector(I))

Subexponential only for �xed n

Alice Pellet-Mary Rigorous class group and units 21/05/22 8 / 26

How to sample x? � Buchmann

Buchmann:

I sample random ideal I =
∏

p∈S p
mp

I x = Shortest_Vector(I)

xOK smooth ⇔ xI−1 smooth
(⇒ the smaller N (xI−1) the better)

Complexity: 2O(n) (for Shortest_Vector(I))

Subexponential only for �xed n

Alice Pellet-Mary Rigorous class group and units 21/05/22 8 / 26

How to sample x? � Buchmann

Buchmann:

I sample random ideal I =
∏

p∈S p
mp

I x = Shortest_Vector(I)

xOK smooth ⇔ xI−1 smooth
(⇒ the smaller N (xI−1) the better)

Complexity: 2O(n) (for Shortest_Vector(I))

Subexponential only for �xed n

Alice Pellet-Mary Rigorous class group and units 21/05/22 8 / 26

How to sample x? � Buchmann

Buchmann:

I sample random ideal I =
∏

p∈S p
mp

I x = Shortest_Vector(I)

xOK smooth ⇔ xI−1 smooth
(⇒ the smaller N (xI−1) the better)

Complexity: 2O(n) (for Shortest_Vector(I))

Subexponential only for �xed n

Alice Pellet-Mary Rigorous class group and units 21/05/22 8 / 26

How to sample x? � Biasse-Fieker

Biasse-Fieker:

I sample random ideal I =
∏

p∈S p
mp

I x = BKZβ(I) (blocksize β)

Complexity: 2O(β) (can be subexponential)

Shortness: ‖x‖∞ ≤ nn/β ·∆1/(2n)
K · N (I)1/n

⇒ N (xI−1) ≤ nn
2/β ·
√

∆K

Alice Pellet-Mary Rigorous class group and units 21/05/22 9 / 26

How to sample x? � Biasse-Fieker

Biasse-Fieker:

I sample random ideal I =
∏

p∈S p
mp

I x = BKZβ(I) (blocksize β)

Complexity: 2O(β) (can be subexponential)

Shortness: ‖x‖∞ ≤ nn/β ·∆1/(2n)
K · N (I)1/n

⇒ N (xI−1) ≤ nn
2/β ·
√

∆K

Alice Pellet-Mary Rigorous class group and units 21/05/22 9 / 26

How to sample x? � Biasse-Fieker

Biasse-Fieker:

I sample random ideal I =
∏

p∈S p
mp

I x = BKZβ(I) (blocksize β)

Complexity: 2O(β) (can be subexponential)

Shortness: ‖x‖∞ ≤ nn/β ·∆1/(2n)
K · N (I)1/n

⇒ N (xI−1) ≤ nn
2/β ·
√

∆K

Alice Pellet-Mary Rigorous class group and units 21/05/22 9 / 26

How to sample x? � Biasse-Fieker

Biasse-Fieker:

I sample random ideal I =
∏

p∈S p
mp

I x = BKZβ(I) (blocksize β)

Complexity: 2O(β) (can be subexponential)

Shortness: ‖x‖∞ ≤ nn/β ·∆1/(2n)
K · N (I)1/n

⇒ N (xI−1) ≤ nn
2/β ·
√

∆K

Alice Pellet-Mary Rigorous class group and units 21/05/22 9 / 26

Intermediate summary

S := {prime p | N (p) ≤ B}

Algorithm SampleVector

1: repeat

2: Sample random I =
∏

p∈S p
mp

3: x ← BKZβ(I)

4: until xI−1 =
∏

p∈S p
np for some np ∈ Z

5: return
(

Log(x), (−np −mp)p
)

Complexity:

O
(
Tsample · p−1smooth

· |S|
)

= 2O(β) · B · p−1
smooth

Alice Pellet-Mary Rigorous class group and units 21/05/22 10 / 26

Intermediate summary

S := {prime p | N (p) ≤ B}

Algorithm SampleVector

1: repeat

2: Sample random I =
∏

p∈S p
mp

3: x ← BKZβ(I)

4: until xI−1 =
∏

p∈S p
np for some np ∈ Z

5: return
(

Log(x), (−np −mp)p
)

Complexity:

O
(
Tsample · p−1smooth

· |S|
)

= 2O(β) · B · p−1
smooth

Alice Pellet-Mary Rigorous class group and units 21/05/22 10 / 26

Intermediate summary

S := {prime p | N (p) ≤ B}

Algorithm SampleVector

1: repeat

2: Sample random I =
∏

p∈S p
mp

3: x ← BKZβ(I)

4: until xI−1 =
∏

p∈S p
np for some np ∈ Z

5: return
(

Log(x), (−np −mp)p
)

Complexity:

O
(
Tsample · p−1smooth

· |S|
)

= 2O(β) · B · p−1
smooth

Alice Pellet-Mary Rigorous class group and units 21/05/22 10 / 26

Smoothness probability

Notation: py ,B = proba that a uniformly random ideal of norm ≤ y
is B-smooth

Asymptotically: py ,B ∼ ρ(u) ≈ u−u (ρ Dickman function, u = log y/ logB)

" K �xed and B , u tending to in�nity

Heuristic: psmooth ≈ u−u where u = logN (xI−1)
log B

2 assumptions hidden:

the provable asymptotic bounds require huge B to be e�ective
(roughly B & 22

n

)

xI−1 is not a random ideal of bounded norm

Alice Pellet-Mary Rigorous class group and units 21/05/22 11 / 26

Smoothness probability

Notation: py ,B = proba that a uniformly random ideal of norm ≤ y
is B-smooth

Asymptotically: py ,B ∼ ρ(u) ≈ u−u (ρ Dickman function, u = log y/ logB)

" K �xed and B , u tending to in�nity

Heuristic: psmooth ≈ u−u where u = logN (xI−1)
log B

2 assumptions hidden:

the provable asymptotic bounds require huge B to be e�ective
(roughly B & 22

n

)

xI−1 is not a random ideal of bounded norm

Alice Pellet-Mary Rigorous class group and units 21/05/22 11 / 26

Smoothness probability

Notation: py ,B = proba that a uniformly random ideal of norm ≤ y
is B-smooth

Asymptotically: py ,B ∼ ρ(u) ≈ u−u (ρ Dickman function, u = log y/ logB)

" K �xed and B , u tending to in�nity

Heuristic: psmooth ≈ u−u where u = logN (xI−1)
log B

2 assumptions hidden:

the provable asymptotic bounds require huge B to be e�ective
(roughly B & 22

n

)

xI−1 is not a random ideal of bounded norm

Alice Pellet-Mary Rigorous class group and units 21/05/22 11 / 26

Smoothness probability

Notation: py ,B = proba that a uniformly random ideal of norm ≤ y
is B-smooth

Asymptotically: py ,B ∼ ρ(u) ≈ u−u (ρ Dickman function, u = log y/ logB)

" K �xed and B , u tending to in�nity

Heuristic: psmooth ≈ u−u where u = logN (xI−1)
log B

2 assumptions hidden:

the provable asymptotic bounds require huge B to be e�ective
(roughly B & 22

n

)

xI−1 is not a random ideal of bounded norm

Alice Pellet-Mary Rigorous class group and units 21/05/22 11 / 26

Smoothness probability

Notation: py ,B = proba that a uniformly random ideal of norm ≤ y
is B-smooth

Asymptotically: py ,B ∼ ρ(u) ≈ u−u (ρ Dickman function, u = log y/ logB)

" K �xed and B , u tending to in�nity

Heuristic: psmooth ≈ u−u where u = logN (xI−1)
log B

2 assumptions hidden:

the provable asymptotic bounds require huge B to be e�ective
(roughly B & 22

n

)

xI−1 is not a random ideal of bounded norm

Alice Pellet-Mary Rigorous class group and units 21/05/22 11 / 26

Sampling one vector � summary

Algorithm SampleVector

1: repeat

2: Sample random I =
∏

p∈S p
mp

3: x ← BKZβ(I)

4: until xI−1 =
∏

p∈S p
np for some np ∈ Z

5: return
(

Log(x), (−np −mp)p
)

Complexity (heuristic):

2O(β) · B · uu with u = logN (xI−1)
log B

≤ n2 log n/β+log |∆K |/2
log B

Instantiating: I β = n2/3

I B = L∆K
(1/2) + Lnn(2/3)

Total complexity: L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 12 / 26

Sampling one vector � summary

Algorithm SampleVector

1: repeat

2: Sample random I =
∏

p∈S p
mp

3: x ← BKZβ(I)

4: until xI−1 =
∏

p∈S p
np for some np ∈ Z

5: return
(

Log(x), (−np −mp)p
)

Complexity (heuristic):

2O(β) · B · uu with u = logN (xI−1)
log B

≤ n2 log n/β+log |∆K |/2
log B

Instantiating: I β = n2/3

I B = L∆K
(1/2) + Lnn(2/3)

Total complexity: L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 12 / 26

Computing the full lattice ΛS
Remark: One can e�ciently approximate det(ΛS) = RegK · hK
(S generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: ~zi ← SampleVector()
3: until L((~zi)i) is a lattice with the desired rank and det

4: Compute a basis B of L((~zi)i) (linear algebra)

5: return B

Correctness: 3

Heuristic: O(B) vectors from SampleVector() generate ΛS with good
probability (rk(ΛS) = O(B))

Complexity: poly(B) = L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 13 / 26

Computing the full lattice ΛS
Remark: One can e�ciently approximate det(ΛS) = RegK · hK
(S generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: ~zi ← SampleVector()
3: until L((~zi)i) is a lattice with the desired rank and det

4: Compute a basis B of L((~zi)i) (linear algebra)

5: return B

Correctness: 3

Heuristic: O(B) vectors from SampleVector() generate ΛS with good
probability (rk(ΛS) = O(B))

Complexity: poly(B) = L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 13 / 26

Computing the full lattice ΛS
Remark: One can e�ciently approximate det(ΛS) = RegK · hK
(S generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: ~zi ← SampleVector()
3: until L((~zi)i) is a lattice with the desired rank and det

4: Compute a basis B of L((~zi)i) (linear algebra)

5: return B

Correctness: 3

Heuristic: O(B) vectors from SampleVector() generate ΛS with good
probability (rk(ΛS) = O(B))

Complexity: poly(B) = L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 13 / 26

Computing the full lattice ΛS
Remark: One can e�ciently approximate det(ΛS) = RegK · hK
(S generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: ~zi ← SampleVector()
3: until L((~zi)i) is a lattice with the desired rank and det

4: Compute a basis B of L((~zi)i) (linear algebra)

5: return B

Correctness: 3

Heuristic: O(B) vectors from SampleVector() generate ΛS with good
probability (rk(ΛS) = O(B))

Complexity: poly(B) = L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 13 / 26

Computing the full lattice ΛS
Remark: One can e�ciently approximate det(ΛS) = RegK · hK
(S generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: ~zi ← SampleVector()
3: until L((~zi)i) is a lattice with the desired rank and det

4: Compute a basis B of L((~zi)i) (linear algebra)

5: return B

Correctness: 3

Heuristic: O(B) vectors from SampleVector() generate ΛS with good
probability (rk(ΛS) = O(B))

Complexity: poly(B) = L∆K
(1/2) + Lnn(2/3)

Alice Pellet-Mary Rigorous class group and units 21/05/22 13 / 26

Heuristics � summary

Heuristic 1: psmooth ≈ u−u where u = logN (xI−1)
log B

1.1. the asymptotic bounds hold even for smallish B 's

1.2. xI−1 behaves like a uniform ideal of bounded norm

Heuristic 2: O(B) vectors from SampleVector() generate ΛS
with good probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 14 / 26

Heuristics � summary

Heuristic 1: psmooth ≈ u−u where u = logN (xI−1)
log B

1.1. the asymptotic bounds hold even for smallish B 's

1.2. xI−1 behaves like a uniform ideal of bounded norm

Heuristic 2: O(B) vectors from SampleVector() generate ΛS
with good probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 14 / 26

Outline of the talk

1 Heuristic algorithms

2 Removing the �rst heuristic

3 Removing the second heuristic

Alice Pellet-Mary Rigorous class group and units 21/05/22 15 / 26

Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal

1: sample random I =
∏

p∈S p
mp

2: B ← BKZβ(I) (B reduced basis of I)

3: sample random x ∈ I (using small basis B)

4: return (x , I)

Theorem (ERH) [BDPW22]

For any in�nite set T of ideals, it holds that

Pr
(x ,I)←SampleInIdeal

(
xI−1 ∈ T

)
≥ δT [nn

2/β ·
√

∆K]

3
.

De�nition: δT [y] ≈ |{a∈T |N (a)≤y}|
|{a ideal | N (a)≤y}| (density of T at y)

[BDPW22] de Boer, Ducas, Pellet-Mary, Wesolowski. Sampling ideals in a class: smooth, near-prime or otherwise.

Alice Pellet-Mary Rigorous class group and units 21/05/22 16 / 26

Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal

1: sample random I =
∏

p∈S p
mp

2: B ← BKZβ(I) (B reduced basis of I)

3: sample random x ∈ I (using small basis B)

4: return (x , I)

Theorem (ERH) [BDPW22]

For any in�nite set T of ideals, it holds that

Pr
(x ,I)←SampleInIdeal

(
xI−1 ∈ T

)
≥ δT [nn

2/β ·
√

∆K]

3
.

De�nition: δT [y] ≈ |{a∈T |N (a)≤y}|
|{a ideal | N (a)≤y}| (density of T at y)

[BDPW22] de Boer, Ducas, Pellet-Mary, Wesolowski. Sampling ideals in a class: smooth, near-prime or otherwise.

Alice Pellet-Mary Rigorous class group and units 21/05/22 16 / 26

Heuristic 1.2

Heuristic 1.2: xI−1 behaves like a uniform ideal of bounded norm

Can be proven using previous slide up to

changing slightly the sampling procedure

decreasing by 3 the success probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 17 / 26

Heuristic 1.1

Heuristic 1.1: δS [y] ≈ u−u even for small B 's (u = log y/ logB)

I We could not prove it, but we proved

Lemma

For any B ≥ Ω((n + log ∆K)3),

δS [y] & u−u · ρ−1K .

Discussion:

for cyclotomic �elds, ρK = poly(n)

what about other �elds?

if the bound is tight, this impacts also the heuristic algorithm

Alice Pellet-Mary Rigorous class group and units 21/05/22 18 / 26

Heuristic 1.1

Heuristic 1.1: δS [y] ≈ u−u even for small B 's (u = log y/ logB)

I We could not prove it, but we proved

Lemma

For any B ≥ Ω((n + log ∆K)3),

δS [y] & u−u · ρ−1K .

Discussion:

for cyclotomic �elds, ρK = poly(n)

what about other �elds?

if the bound is tight, this impacts also the heuristic algorithm

Alice Pellet-Mary Rigorous class group and units 21/05/22 18 / 26

Heuristic 1.1

Heuristic 1.1: δS [y] ≈ u−u even for small B 's (u = log y/ logB)

I We could not prove it, but we proved

Lemma

For any B ≥ Ω((n + log ∆K)3),

δS [y] & u−u · ρ−1K .

Discussion:

for cyclotomic �elds, ρK = poly(n)

what about other �elds?

if the bound is tight, this impacts also the heuristic algorithm

Alice Pellet-Mary Rigorous class group and units 21/05/22 18 / 26

Heuristic 1.1

Heuristic 1.1: δS [y] ≈ u−u even for small B 's (u = log y/ logB)

I We could not prove it, but we proved

Lemma

For any B ≥ Ω((n + log ∆K)3),

δS [y] & u−u · ρ−1K .

Discussion:

for cyclotomic �elds, ρK = poly(n)

what about other �elds?

if the bound is tight, this impacts also the heuristic algorithm

Alice Pellet-Mary Rigorous class group and units 21/05/22 18 / 26

Heuristic 1.1

Heuristic 1.1: δS [y] ≈ u−u even for small B 's (u = log y/ logB)

I We could not prove it, but we proved

Lemma

For any B ≥ Ω((n + log ∆K)3),

δS [y] & u−u · ρ−1K .

Discussion:

for cyclotomic �elds, ρK = poly(n)

what about other �elds?

if the bound is tight, this impacts also the heuristic algorithm

Alice Pellet-Mary Rigorous class group and units 21/05/22 18 / 26

Heuristic 1 � summary

One can prove heuristic 1 up to

changing slightly the sampling procedure (same asymptotic complexity)

dividing psmooth by ρK

Theorem (ERH)

There is an algorithm SampleVector that computes ~v ∈ ΛS in time

ρK ·
(
L∆K

(1/2) + Lnn(2/3)
)
.

Alice Pellet-Mary Rigorous class group and units 21/05/22 19 / 26

Heuristic 1 � summary

One can prove heuristic 1 up to

changing slightly the sampling procedure (same asymptotic complexity)

dividing psmooth by ρK

Theorem (ERH)

There is an algorithm SampleVector that computes ~v ∈ ΛS in time

ρK ·
(
L∆K

(1/2) + Lnn(2/3)
)
.

Alice Pellet-Mary Rigorous class group and units 21/05/22 19 / 26

Outline of the talk

1 Heuristic algorithms

2 Removing the �rst heuristic

3 Removing the second heuristic

Alice Pellet-Mary Rigorous class group and units 21/05/22 20 / 26

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

takes as input an ideal I

computes ~v ∈ ΛS

in time
ρK ·

(
L∆K

(1/2) + Lnn(2/3)
)
.

From now on, we use SampleVector in a black-box way

Alice Pellet-Mary Rigorous class group and units 21/05/22 21 / 26

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

takes as input an ideal I

computes x ∈ K and (np)p ∈ Z|S| such that xOK =
∏

p∈S p
np

in time
ρK ·

(
L∆K

(1/2) + Lnn(2/3)
)
.

From now on, we use SampleVector in a black-box way

Alice Pellet-Mary Rigorous class group and units 21/05/22 21 / 26

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

takes as input an ideal I

computes x ∈ K and (np)p ∈ Z|S| such that xOK = I ·
∏

p∈S p
np

in time
ρK ·

(
L∆K

(1/2) + Lnn(2/3)
)
.

From now on, we use SampleVector in a black-box way

Alice Pellet-Mary Rigorous class group and units 21/05/22 21 / 26

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

takes as input an ideal I

computes x ∈ K and (np)p ∈ Z|S| such that xOK = I ·
∏

p∈S p
np

in time
ρK ·

(
L∆K

(1/2) + Lnn(2/3)
)
.

From now on, we use SampleVector in a black-box way

Alice Pellet-Mary Rigorous class group and units 21/05/22 21 / 26

Heuristic 2 � main idea

Algorithm RandomVector

1: sample random ~v :=
(

Log x , (−np)
)

2: de�ne I := x ·
∏

p∈S p
−np

3: ~w :=
(

Log y , (−mp)p
)
← SampleVector(I) (yOK = I ·

∏
pmp)

4: return ~w − ~v

Correctness: yx−1 · OK =
∏

p p
mp−np ⇒ ~w − ~v ∈ ΛS

Intuition: ~w − ~v is random in ΛS (and independent from other vectors
obtained so far) because SampleVector cannot guess ~v from I .

Alice Pellet-Mary Rigorous class group and units 21/05/22 22 / 26

Heuristic 2 � main idea

Algorithm RandomVector

1: sample random ~v :=
(

Log x , (−np)
)

2: de�ne I := x ·
∏

p∈S p
−np

3: ~w :=
(

Log y , (−mp)p
)
← SampleVector(I) (yOK = I ·

∏
pmp)

4: return ~w − ~v

Correctness: yx−1 · OK =
∏

p p
mp−np ⇒ ~w − ~v ∈ ΛS

Intuition: ~w − ~v is random in ΛS (and independent from other vectors
obtained so far) because SampleVector cannot guess ~v from I .

Alice Pellet-Mary Rigorous class group and units 21/05/22 22 / 26

Heuristic 2 � main idea

Algorithm RandomVector

1: sample random ~v :=
(

Log x , (−np)
)

2: de�ne I := x ·
∏

p∈S p
−np

3: ~w :=
(

Log y , (−mp)p
)
← SampleVector(I) (yOK = I ·

∏
pmp)

4: return ~w − ~v

Correctness: yx−1 · OK =
∏

p p
mp−np ⇒ ~w − ~v ∈ ΛS

Intuition: ~w − ~v is random in ΛS (and independent from other vectors
obtained so far) because SampleVector cannot guess ~v from I .

Alice Pellet-Mary Rigorous class group and units 21/05/22 22 / 26

More details

Reminder: I ~v =
(

Log x , (−np)p
)

I I = x ·
∏

p p
−np

I ~w = SampleVector(I)

Observation: x
∏

p p
−np = x ′

∏
p p
−n′p ⇔ ~v = ~v ′ mod ΛS

⇒ I only depends on ~v + ΛS
⇒ ~w only depends on ~v + ΛS

(provided we have a canonical representation for I)

Alice Pellet-Mary Rigorous class group and units 21/05/22 23 / 26

More details

Reminder: I ~v =
(

Log x , (−np)p
)

I I = x ·
∏

p p
−np

I ~w = SampleVector(I)

Observation: x
∏

p p
−np = x ′

∏
p p
−n′p ⇔ ~v = ~v ′ mod ΛS

⇒ I only depends on ~v + ΛS
⇒ ~w only depends on ~v + ΛS

(provided we have a canonical representation for I)

Alice Pellet-Mary Rigorous class group and units 21/05/22 23 / 26

More details

Reminder: I ~v =
(

Log x , (−np)p
)

I I = x ·
∏

p p
−np

I ~w = SampleVector(I)

Observation: x
∏

p p
−np = x ′

∏
p p
−n′p ⇔ ~v = ~v ′ mod ΛS

⇒ I only depends on ~v + ΛS
⇒ ~w only depends on ~v + ΛS

(provided we have a canonical representation for I)

Alice Pellet-Mary Rigorous class group and units 21/05/22 23 / 26

Distribution of ~v

~w = f (~v + ΛS) (f might be randomized)

Consequence: (DΛ,σ,~c discrete gaussian distribution over Λ, center ~c, deviation σ)

I ~v ← Dσ

I ~w ← f (~v + ΛS)

I return ~z := ~v − ~w

⇐⇒
(if σ large

enough)

I ~v ′ + ΛS ← Dσ mod ΛS

I ~w ← f (~v ′ + ΛS)

I ~v ← D~v ′+ΛS ,σ

I return ~z := ~v − ~w

~v − ~w ∼ DΛS ,σ,~c (for some random center ~c)

Lemma: O(B) samples from DΛS ,σ,~c generate ΛS with high probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 24 / 26

Distribution of ~v

~w = f (~v + ΛS) (f might be randomized)

Consequence: (DΛ,σ,~c discrete gaussian distribution over Λ, center ~c, deviation σ)

I ~v ← Dσ

I ~w ← f (~v + ΛS)

I return ~z := ~v − ~w

⇐⇒
(if σ large

enough)

I ~v ′ + ΛS ← Dσ mod ΛS

I ~w ← f (~v ′ + ΛS)

I ~v ← D~v ′+ΛS ,σ

I return ~z := ~v − ~w

~v − ~w ∼ DΛS ,σ,~c (for some random center ~c)

Lemma: O(B) samples from DΛS ,σ,~c generate ΛS with high probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 24 / 26

Distribution of ~v

~w = f (~v + ΛS) (f might be randomized)

Consequence: (DΛ,σ,~c discrete gaussian distribution over Λ, center ~c, deviation σ)

I ~v ← Dσ

I ~w ← f (~v + ΛS)

I return ~z := ~v − ~w

⇐⇒
(if σ large

enough)

I ~v ′ + ΛS ← Dσ mod ΛS

I ~w ← f (~v ′ + ΛS)

I ~v ← D~v ′+ΛS ,σ

I return ~z := ~v − ~w

~v − ~w ∼ DΛS ,σ,~c (for some random center ~c)

Lemma: O(B) samples from DΛS ,σ,~c generate ΛS with high probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 24 / 26

Distribution of ~v

~w = f (~v + ΛS) (f might be randomized)

Consequence: (DΛ,σ,~c discrete gaussian distribution over Λ, center ~c, deviation σ)

I ~v ← Dσ

I ~w ← f (~v + ΛS)

I return ~z := ~v − ~w

⇐⇒
(if σ large

enough)

I ~v ′ + ΛS ← Dσ mod ΛS

I ~w ← f (~v ′ + ΛS)

I ~v ← D~v ′+ΛS ,σ

I return ~z := ~v − ~w

~v − ~w ∼ DΛS ,σ,~c (for some random center ~c)

Lemma: O(B) samples from DΛS ,σ,~c generate ΛS with high probability

Alice Pellet-Mary Rigorous class group and units 21/05/22 24 / 26

Heuristic 2 � summary

Algorithm ComputeSUnits

1: repeat

2: sample ~v :=
(

Log(x), (−np)
)
← Dσ

3: ~w ← SampleVector(x ·
∏

p∈S p
−np)

4: ~zi := ~v − ~w
5: until L

(
(~zi)i

)
has good rank and volume

Theorem (ERH)

If SampleVector is correct, then ComputeSUnits computes a basis of ΛS
in time T (SampleVector) · poly(B).

Alice Pellet-Mary Rigorous class group and units 21/05/22 25 / 26

Heuristic 2 � summary

Algorithm ComputeSUnits

1: repeat

2: sample ~v :=
(

Log(x), (−np)
)
← Dσ

3: ~w ← SampleVector(x ·
∏

p∈S p
−np)

4: ~zi := ~v − ~w
5: until L

(
(~zi)i

)
has good rank and volume

Theorem (ERH)

If SampleVector is correct, then ComputeSUnits computes a basis of ΛS
in time T (SampleVector) · poly(B).

Alice Pellet-Mary Rigorous class group and units 21/05/22 25 / 26

Conclusion

Summary:

remove both heuristics of Biasse-Fieker algorithm (under ERH)

algorithm is slightly modi�ed

the run time is increased by a factor ρK

Open question: is δS [y] ≈ u−u or δS [y] ≈ ρ−1K · u
−u ?

(Reminder: δS [y] = density of B-smooth ideals of norm ≤ y)

I can we improve our runtime?

I or are the runtime of the heuristic algorithms too optimistic?

Questions?

Alice Pellet-Mary Rigorous class group and units 21/05/22 26 / 26

Conclusion

Summary:

remove both heuristics of Biasse-Fieker algorithm (under ERH)

algorithm is slightly modi�ed

the run time is increased by a factor ρK

Open question: is δS [y] ≈ u−u or δS [y] ≈ ρ−1K · u
−u ?

(Reminder: δS [y] = density of B-smooth ideals of norm ≤ y)

I can we improve our runtime?

I or are the runtime of the heuristic algorithms too optimistic?

Questions?

Alice Pellet-Mary Rigorous class group and units 21/05/22 26 / 26

Conclusion

Summary:

remove both heuristics of Biasse-Fieker algorithm (under ERH)

algorithm is slightly modi�ed

the run time is increased by a factor ρK

Open question: is δS [y] ≈ u−u or δS [y] ≈ ρ−1K · u
−u ?

(Reminder: δS [y] = density of B-smooth ideals of norm ≤ y)

I can we improve our runtime?

I or are the runtime of the heuristic algorithms too optimistic?

Questions?

Alice Pellet-Mary Rigorous class group and units 21/05/22 26 / 26

	Introduction
	Heuristic algorithms
	Removing the first heuristic
	Removing the second heuristic
	Conclusion

