Rigorous computation of class group and unit group

Koen de Boer¹ Alice Pellet-Mary² Benjamin Wesolowski²

¹ CWI and Leiden university ² CNRS and Bordeaux university

Lfant seminar, Bordeaux

We describe an algorithm that computes the class group and unit group

- in any number field K (with discriminant Δ_K and degree n)
- ► runs in expected subexponential time $L_{\Delta_{\kappa}}(1/2) + L_{n^{n}}(2/3)$ (and polynomial in the residue ρ_{κ} of the Dedekind zeta function at 1)
- ▶ is provably correct (assuming ERH)

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta\kappa}(1/2)$	 Image: A second s

(all algorithms assume ERH)

Alice Pellet-Mary

Rigorous class group and units

[[]HM89] Hafner, McCurley. A rigorous subexponential algorithm for computation of class groups. Journal of the American mathematical society.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1/2)$	1
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{K}}(1/2)$	×

(all algorithms assume ERH)

Alice Pellet-Mary

Rigorous class group and units

[[]Buc88] Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1/2)$	1
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(2/3)$	×

(all algorithms assume ERH)

Alice Pellet-Mary

Rigorous class group and units

[[]BF14] Biasse, Fieker. Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta\kappa}(1/2)$	 ✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(2/3)$	×
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_{\mathcal{K}}}(1/3)$	×

(all algorithms assume ERH)

[BEF+17] Biasse, Espitau, Fouque, Gélin, Kirchner. Computing generator in cyclotomic integer rings. Eurocrypt.

Alice Pellet-Mary

Rigorous class group and units

21/05/22 3/26

[[]Gel17] Gélin. Class group computations in number fields and applications to cryptology. PhD thesis.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1/2)$	1
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta\kappa}(2/3)$	×
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_{\mathcal{K}}}(1/3)$	×
[BS16]	arbitrary degree <i>n</i>	quantum poly	 Image: A second s

(all algorithms assume ERH)

[[]BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1/2)$	1
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta\kappa}(2/3)$	×
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_{\mathcal{K}}}(1/3)$	×
[BS16]	arbitrary degree <i>n</i>	quantum poly	 Image: A second s
This work	arbitrary degree <i>n</i>	$\rho_{\kappa}(L_{\Delta_{\kappa}}(1/2)+L_{n^n}(2/3))$	✓

(all algorithms assume ERH)

[[]BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

S-units

Notations:

- ${\mathcal S}$ is a finite set of prime ideals of ${\mathcal O}_{{\mathcal K}}$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding

 $(Log(x) = (log |\sigma_1(x)|, \cdots, log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

S-units

Notations:

- ${\mathcal S}$ is a finite set of prime ideals of ${\mathcal O}_{{\mathcal K}}$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding

 $(Log(x) = (log |\sigma_1(x)|, \cdots, log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

Definition

The Log-S-unit lattice is

$$\Lambda_{\mathcal{S}} := \left\{ \left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p} \in \mathcal{S}}
ight) \ \middle| \ x \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}
ight\} \subset \mathbb{R}^{n} imes \mathbb{Z}^{|\mathcal{S}|}$$

S-units

Notations:

- $\mathcal S$ is a finite set of prime ideals of $\mathcal O_{\mathcal K}$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding

 $(Log(x) = (log |\sigma_1(x)|, \cdots, log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

Definition

The Log-S-unit lattice is

$$\Lambda_{\mathcal{S}} := \left\{ \left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p} \in \mathcal{S}} \right) \middle| x \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}} \right\} \subset \mathbb{R}^{n} \times \mathbb{Z}^{|\mathcal{S}|}$$

Computing $\mathcal S\text{-units}=\text{computing a basis of }\Lambda_{\mathcal S}$

Theorem and applications

Theorem

Assuming ERH, there is a probabilistic algorithm which computes Λ_S in expected time polynomial in its input length, in ρ_K , in $L_{\Delta_K}(1/2)$ and in $L_{n^n}(2/3)$.

Reminder: ρ_K is the residue at 1 of ζ_K

Theorem and applications

Theorem

Assuming ERH, there is a probabilistic algorithm which computes Λ_S in expected time polynomial in its input length, in ρ_K , in $L_{\Delta_K}(1/2)$ and in $L_{n^n}(2/3)$.

Reminder: ρ_K is the residue at 1 of ζ_K

Applications: we can also compute

- unit group $(S = \emptyset)$
- class-group (S generates Cl_K)
- generators of principal ideals
- class-group discrete logarithms

Outline of the talk

Heuristic algorithms

2 Removing the first heuristic

3 Removing the second heuristic

Computing a vector of Λ_S

Definition: $\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$ (for some *B* to be determined)

Definition: $\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$ (for some *B* to be determined)

Algorithm SampleVector

1: repeat

- 2: Sample random $x \in \mathcal{O}_K$
- 3: until $x\mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 4: return $(Log(x), (-n_p)_p)$

Definition: $\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$ (for some *B* to be determined)

Algorithm SampleVector

1: repeat

- 2: Sample random $x \in \mathcal{O}_K$
- 3: until $x\mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 4: return $(Log(x), (-n_p)_p)$

Correctness: 🗸

Definition: $\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$ (for some *B* to be determined)

Algorithm SampleVector

1: repeat

- 2: Sample random $x \in \mathcal{O}_K$
- 3: until $x\mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 4: return $(Log(x), (-n_p)_p)$

Correctness: 🗸

Complexity:
$$O(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|)$$

- ► T_{sample}: time to sample x
- ▶ p_{smooth}: probability that xO_K is smooth
- $|\mathcal{S}| = O(B)$: time to test smoothness

Definition: $\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$ (for some *B* to be determined)

Algorithm SampleVector

1: repeat

- 2: Sample random $x \in \mathcal{O}_K$
- 3: until $x\mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 4: return $(Log(x), (-n_p)_p)$

Correctness: 🗸

Complexity:
$$O\left(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|\right)$$

- T_{sample}: time to sample x
- ▶ p_{smooth}: probability that xO_K is smooth
- $|\mathcal{S}| = O(B)$: time to test smoothness

Buchmann:

- sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- > x = Shortest_Vector(1)

Buchmann:

- ▶ sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_\mathfrak{p}}$
- x = Shortest_Vector(1)

 $x\mathcal{O}_{\mathcal{K}} \text{ smooth } \Leftrightarrow xI^{-1} \text{ smooth}$ (\Rightarrow the smaller $\mathcal{N}(xI^{-1})$ the better)

Buchmann:

- ▶ sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_\mathfrak{p}}$
- x = Shortest_Vector(1)

 $x\mathcal{O}_{\mathcal{K}}$ smooth $\Leftrightarrow xI^{-1}$ smooth

 $(\Rightarrow$ the smaller $\mathcal{N}(xI^{-1})$ the better)

Complexity: 2^{O(n)} (for Shortest_Vector(1))

Buchmann:

- ▶ sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_\mathfrak{p}}$
- x = Shortest_Vector(1)

 $x\mathcal{O}_{\mathcal{K}}$ smooth $\Leftrightarrow xI^{-1}$ smooth

 $(\Rightarrow$ the smaller $\mathcal{N}(xl^{-1})$ the better)

Complexity: 2^{O(n)} (for Shortest_Vector(1))

Subexponential only for fixed n

Biasse-Fieker:

- sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Biasse-Fieker:

- ▶ sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

Biasse-Fieker:

- sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

Shortness: $\|x\|_{\infty} \leq n^{n/\beta} \cdot \Delta_{\mathcal{K}}^{1/(2n)} \cdot \mathcal{N}(I)^{1/n}$

Biasse-Fieker:

- sample random ideal $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

Shortness: $\|x\|_{\infty} \leq n^{n/\beta} \cdot \Delta_{K}^{1/(2n)} \cdot \mathcal{N}(I)^{1/n}$

$$\Rightarrow \quad \mathcal{N}(xI^{-1}) \leq n^{n^2/\beta} \cdot \sqrt{\Delta_K}$$

Intermediate summary

 $\mathcal{S} := \{ \mathsf{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$

Algorithm SampleVector

1: repeat

2: Sample random
$$I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$$

- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until $xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$ for some $n_\mathfrak{p} \in \mathbb{Z}$

5: return
$$(Log(x), (-n_{\mathfrak{p}} - m_{\mathfrak{p}})_{\mathfrak{p}})$$

Intermediate summary

 $\mathcal{S} := \{ \mathsf{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$

Algorithm SampleVector

1: repeat

2: Sample random
$$I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$$

- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until $xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$ for some $n_\mathfrak{p} \in \mathbb{Z}$

5: return
$$(Log(x), (-n_{\mathfrak{p}} - m_{\mathfrak{p}})_{\mathfrak{p}})$$

Complexity:

$$O\left(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|\right) = 2^{O(\beta)} \cdot B \cdot p_{\text{smooth}}^{-1}$$

Intermediate summary

 $\mathcal{S} := \{ \mathsf{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$

Algorithm SampleVector

1: repeat

2: Sample random
$$I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$$

- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until $xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$ for some $n_\mathfrak{p} \in \mathbb{Z}$

5: return
$$(Log(x), (-n_{\mathfrak{p}} - m_{\mathfrak{p}})_{\mathfrak{p}})$$

Complexity:

$$O\left(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|\right) = 2^{O(\beta)} \cdot B \cdot p_{\text{smooth}}^{-1}$$

Notation: $p_{y,B} = proba$ that a uniformly random ideal of norm $\leq y$ is *B*-smooth

Notation: $p_{y,B} = proba$ that a uniformly random ideal of norm $\leq y$ is *B*-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

Notation: $p_{y,B} = proba$ that a uniformly random ideal of norm $\leq y$ is *B*-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

 \land K fixed and B, u tending to infinity

Notation: $p_{y,B}$ = proba that a uniformly random ideal of norm $\leq y$ is *B*-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

▲ K fixed and B, u tending to infinity

Heuristic: $p_{\text{smooth}} pprox u^{-u}$ where $u = \frac{\log \mathcal{N}(xt^{-1})}{\log B}$

Notation: $p_{y,B}$ = proba that a uniformly random ideal of norm $\leq y$ is *B*-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

▲ K fixed and B, u tending to infinity

Heuristic:
$$p_{ ext{smooth}} pprox u^{-u}$$
 where $u = rac{\log \mathcal{N}(xl^{-1})}{\log B}$

2 assumptions hidden:

- the provable asymptotic bounds require huge B to be effective (roughly $B \gtrsim 2^{2^n}$)
- xI^{-1} is not a random ideal of bounded norm

Sampling one vector – summary

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until $xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$ for some $n_\mathfrak{p} \in \mathbb{Z}$

5: return
$$(Log(x), (-n_{\mathfrak{p}} - m_{\mathfrak{p}})_{\mathfrak{p}})$$

Complexity (heuristic):

$$2^{O(\beta)} \cdot B \cdot u^u \qquad \text{with } u = \frac{\log \mathcal{N}(xl^{-1})}{\log B} \le \frac{n^2 \log n/\beta + \log |\Delta_K|/2}{\log B}$$
Sampling one vector – summary

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until x/^1 = $\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_\mathfrak{p}}$ for some $n_\mathfrak{p}\in\mathbb{Z}$

5: return
$$(Log(x), (-n_{\mathfrak{p}} - m_{\mathfrak{p}})_{\mathfrak{p}})$$

Complexity (heuristic):

$$2^{O(\beta)} \cdot B \cdot u^u$$
 with $u = \frac{\log \mathcal{N}(x|t^{-1})}{\log B} \le \frac{n^2 \log n/\beta + \log |\Delta_K|/2}{\log B}$

Instantiating:

$$\beta = n^{2/3}$$

•
$$B = L_{\Delta_{\kappa}}(1/2) + L_{n^n}(2/3)$$

Total complexity: $L_{\Delta_{\mathcal{K}}}(1/2) + L_{n^n}(2/3)$

Remark: One can efficiently approximate $det(\Lambda_{\mathcal{S}}) = Reg_{\mathcal{K}} \cdot h_{\mathcal{K}}$

(\mathcal{S} generates the class-group)

Remark: One can efficiently approximate $det(\Lambda_S) = Reg_K \cdot h_K$

(${\mathcal S}$ generates the class-group)

Algorithm ComputeSUnits

1: repeat

- 2: $\vec{z_i} \leftarrow \texttt{SampleVector}()$
- 3: until $\mathcal{L}((ec{z_i})_i)$ is a lattice with the desired rank and det
- 4: Compute a basis B of $\mathcal{L}((\vec{z_i})_i)$ (linear algebra)
- 5: return B

Remark: One can efficiently approximate $det(\Lambda_S) = Reg_K \cdot h_K$

(${\mathcal S}$ generates the class-group)

Algorithm ComputeSUnits

1: repeat

2: $\vec{z_i} \leftarrow \texttt{SampleVector}()$

- 3: until $\mathcal{L}((ec{z_i})_i)$ is a lattice with the desired rank and det
- 4: Compute a basis B of $\mathcal{L}((\vec{z_i})_i)$ (linear algebra)

5: return B

Correctness: 🗸

Remark: One can efficiently approximate $det(\Lambda_S) = Reg_K \cdot h_K$

 $(\mathcal{S} \text{ generates the class-group})$

Algorithm ComputeSUnits

1: repeat

2: $\vec{z_i} \leftarrow \texttt{SampleVector}()$

- 3: until $\mathcal{L}((ec{z_i})_i)$ is a lattice with the desired rank and det
- 4: Compute a basis B of $\mathcal{L}((\vec{z_i})_i)$ (linear algebra)

5: return B

Correctness: 🗸

Heuristic: O(B) vectors from SampleVector() generate Λ_S with good probability $(\operatorname{rk}(\Lambda_S) = O(B))$

Remark: One can efficiently approximate $det(\Lambda_{\mathcal{S}}) = Reg_{\mathcal{K}} \cdot h_{\mathcal{K}}$

 $(\mathcal{S} \text{ generates the class-group})$

Algorithm ComputeSUnits

1: repeat

2: $\vec{z_i} \leftarrow \texttt{SampleVector}()$

- 3: until $\mathcal{L}((ec{z_i})_i)$ is a lattice with the desired rank and det
- 4: Compute a basis B of $\mathcal{L}((\vec{z_i})_i)$ (linear algebra)

5: return B

Correctness: 🗸

Heuristic: O(B) vectors from SampleVector() generate Λ_S with good probability $(\operatorname{rk}(\Lambda_S) = O(B))$

Complexity: $\operatorname{poly}(B) = L_{\Delta_K}(1/2) + L_{n^n}(2/3)$

Heuristics – summary

Heuristic 1:
$$p_{\text{smooth}} \approx u^{-u}$$
 where $u = \frac{\log \mathcal{N}(xI^{-1})}{\log B}$

1.1. the asymptotic bounds hold even for smallish B's 1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristics – summary

Heuristic 1:
$$p_{\text{smooth}} \approx u^{-u}$$
 where $u = \frac{\log \mathcal{N}(xI^{-1})}{\log B}$

1.1. the asymptotic bounds hold even for smallish B's 1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristic 2: O(B) vectors from SampleVector() generate Λ_S with good probability

Outline of the talk

Heuristic algorithms

3 Removing the second heuristic

Provable sampling in ideals [BDPW22]

[BDPW22] de Boer, Ducas, Pellet-Mary, Wesolowski. Sampling ideals in a class: smooth, near-prime or otherwise.

Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal1: sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$ 2: $B \leftarrow BKZ_{\beta}(I)$ 3: sample random $x \in I$ (using small basis B)4: return (x, I)

Theorem (ERH) [BDPW22]

For any infinite set ${\mathcal T}$ of ideals, it holds that

$$\Pr_{(x,l) \leftarrow \texttt{SampleInIdeal}} \left(x l^{-1} \in \mathcal{T} \right) \geq \frac{\delta_{\mathcal{T}}[n^{n^2/\beta} \cdot \sqrt{\Delta_K}]}{3}$$

Definition: $\delta_{\mathcal{T}}[y] \approx \frac{|\{\mathfrak{a} \in \mathcal{T} \mid \mathcal{N}(\mathfrak{a}) \leq y\}|}{|\{\mathfrak{a} \text{ ideal } | \mathcal{N}(\mathfrak{a}) \leq y\}|}$ (density of \mathcal{T} at y)

[[]BDPW22] de Boer, Ducas, Pellet-Mary, Wesolowski. Sampling ideals in a class: smooth, near-prime or otherwise.

Heuristic 1.2: xI^{-1} behaves like a uniform ideal of bounded norm

Can be proven using previous slide up to

- changing slightly the sampling procedure
- decreasing by 3 the success probability

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small *B*'s $(u = \log y / \log B)$

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small *B*'s $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any $B \geq \Omega((n + \log \Delta_K)^3)$,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1}.$$

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small *B*'s $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any $B \geq \Omega((n + \log \Delta_{\mathcal{K}})^3)$,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1}$$

Discussion:

• for cyclotomic fields, $\rho_K = \text{poly}(n)$

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small *B*'s $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

```
For any B \geq \Omega((n + \log \Delta_{\mathcal{K}})^3),
```

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1}$$

Discussion:

- for cyclotomic fields, $\rho_K = \text{poly}(n)$
- what about other fields?

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B's $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

```
For any B \geq \Omega((n + \log \Delta_{\mathcal{K}})^3),
```

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1}$$

Discussion:

- for cyclotomic fields, $\rho_K = \text{poly}(n)$
- what about other fields?
- if the bound is tight, this impacts also the heuristic algorithm

Heuristic 1 – summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure (same asymptotic complexity)
- dividing p_{smooth} by ρ_K

Heuristic 1 – summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure (same asymptotic complexity)
- dividing p_{smooth} by ρ_K

Theorem (ERH)

There is an algorithm <code>SampleVector</code> that computes $ec{v} \in \Lambda_\mathcal{S}$ in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^{n}}(2/3)\Big).$$

Outline of the talk

1 Heuristic algorithms

2 Removing the first heuristic

3 Removing the second heuristic

Reminder

There is an algorithm SampleVector that

• computes
$$ec{v}\in \Lambda_{\mathcal{S}}$$

• in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^{n}}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

• computes $x \in K$ and $(n_p)_p \in \mathbb{Z}^{|S|}$ such that $x\mathcal{O}_K = \prod_{p \in S} \mathfrak{p}^{n_p}$

in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^{n}}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

- takes as input an ideal I
- computes $x \in K$ and $(n_\mathfrak{p})_\mathfrak{p} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x\mathcal{O}_K = I \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$

in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^{n}}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

- takes as input an ideal I
- computes $x \in K$ and $(n_\mathfrak{p})_\mathfrak{p} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x\mathcal{O}_K = I \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_\mathfrak{p}}$

in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^{n}}(2/3)\Big).$$

From now on, we use SampleVector in a black-box way

Heuristic 2 - main idea

Algorithm RandomVector

1: sample random
$$\vec{v} := (\log x, (-n_p))$$

2: define $l := x \cdot \prod_{p \in S} p^{-n_p}$
3: $\vec{w} := (\log y, (-m_p)_p) \leftarrow \text{SampleVector}(I) \quad (y \mathcal{O}_K = l \cdot \prod p^{m_p})$
4: return $\vec{w} - \vec{v}$

Heuristic 2 - main idea

Algorithm RandomVector

1: sample random
$$\vec{v} := (\log x, (-n_{\mathfrak{p}}))$$

2: define $I := x \cdot \prod_{\mathfrak{p} \in S} \mathfrak{p}^{-n_{\mathfrak{p}}}$
3: $\vec{w} := (\log y, (-m_{\mathfrak{p}})_{\mathfrak{p}}) \leftarrow \text{SampleVector}(I) \quad (y\mathcal{O}_{\mathcal{K}} = I \cdot \prod \mathfrak{p}^{m_{\mathfrak{p}}})$
4: return $\vec{w} - \vec{v}$

$$\begin{array}{lll} \mathsf{Correctness:} \ yx^{-1} \cdot \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}} - n_{\mathfrak{p}}} \quad \Rightarrow \quad \vec{w} - \vec{v} \in \Lambda_{\mathcal{S}} \end{array}$$

Heuristic 2 - main idea

Algorithm RandomVector

1: sample random
$$\vec{v} := (\log x, (-n_p))$$

2: define $I := x \cdot \prod_{p \in S} p^{-n_p}$
3: $\vec{w} := (\log y, (-m_p)_p) \leftarrow \text{SampleVector}(I) \quad (y \mathcal{O}_K = I \cdot \prod p^{m_p})$
4: return $\vec{w} - \vec{v}$

$$\begin{array}{lll} \mathsf{Correctness:} & yx^{-1} \cdot \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}} - n_{\mathfrak{p}}} & \Rightarrow & \vec{w} - \vec{v} \in \Lambda_{\mathcal{S}} \end{array}$$

Intuition: $\vec{w} - \vec{v}$ is random in Λ_S (and independent from other vectors obtained so far) because SampleVector cannot guess \vec{v} from *I*.

More details

Reminder:

$$\blacktriangleright \quad \vec{v} = \big(\operatorname{Log} x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \big)$$

$$I = x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}$$

▶
$$\vec{w} = \text{SampleVector}(I)$$

More details

Reminder:

$$\vec{v} = \left(\log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)$$
$$I = x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}$$

•
$$\vec{w} = \text{SampleVector}(I)$$

Observation:
$$x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} = x' \prod_{\mathfrak{p}} \mathfrak{p}^{-n'_{\mathfrak{p}}} \Leftrightarrow \vec{v} = \vec{v}' \mod \Lambda_{\mathcal{S}}$$

More details

Reminder:

▶
$$\vec{v} = (\log x, (-n_p)_p)$$
▶ $l = x \cdot \prod_p p^{-n_p}$
▶ $\vec{w} = \text{SampleVector}(I)$

Observation: $x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} = x' \prod_{\mathfrak{p}} \mathfrak{p}^{-n'_{\mathfrak{p}}} \Leftrightarrow \vec{v} = \vec{v}' \mod \Lambda_{\mathcal{S}}$

 $\Rightarrow I \text{ only depends on } \vec{v} + \Lambda_S$ $\Rightarrow \vec{w} \text{ only depends on } \vec{v} + \Lambda_S$ (provided we have a canonical representation for I)

$$\vec{w} = f(\vec{v} + \Lambda_S)$$
 (f might be randomized)

$$ec{w} = f(ec{v} + \Lambda_{\mathcal{S}})$$
 (f might be randomized)

Consequence: $(D_{\Lambda,\sigma,\vec{c}}$ discrete gaussian distribution over Λ , center \vec{c} , deviation σ)

- $\blacktriangleright \quad \vec{v} \leftarrow D_{\sigma}$
- $\vec{w} \leftarrow f(\vec{v} + \Lambda_S)$
- return $\vec{z} := \vec{v} \vec{w}$
- (if σ large enough)

 \Leftrightarrow

- $\blacktriangleright \quad \vec{v}' + \Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$
- $\vec{w} \leftarrow f(\vec{v}' + \Lambda_S)$
- $\blacktriangleright \quad \vec{v} \leftarrow D_{\vec{v}' + \Lambda_S, \sigma}$
- return $\vec{z} := \vec{v} \vec{w}$

$$ec{w} = f(ec{v} + \Lambda_{\mathcal{S}})$$
 (f might be randomized)

Consequence: $(D_{\Lambda,\sigma,\vec{c}} \text{ discrete gaussian distribution over } \Lambda, \text{ center } \vec{c}, \text{ deviation } \sigma)$

- \blacktriangleright $\vec{v} \leftarrow D_{\sigma}$
- $\vec{w} \leftarrow f(\vec{v} + \Lambda_S)$
- return $\vec{z} := \vec{v} \vec{w}$
- (if σ large enough)

 \Leftrightarrow

 $\quad \vec{v}' + \Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$

•
$$\vec{w} \leftarrow f(\vec{v}' + \Lambda_S)$$

$$\vec{v} \leftarrow D_{\vec{v}' + \Lambda_{\mathcal{S}}, \sigma}$$

• return
$$\vec{z} := \vec{v} - \vec{w}$$

 $ec{v}-ec{w}\sim D_{\Lambda_{\mathcal{S}},\sigma,ec{c}}$ (for some random center $ec{c}$)

$$ec{w} = f(ec{v} + \Lambda_{\mathcal{S}})$$
 (f might be randomized)

Consequence: $(D_{\Lambda,\sigma,\vec{c}}$ discrete gaussian distribution over Λ , center \vec{c} , deviation σ)

- \blacktriangleright $\vec{v} \leftarrow D_{\sigma}$
- $\vec{w} \leftarrow f(\vec{v} + \Lambda_S)$
- return $\vec{z} := \vec{v} \vec{w}$
- (if σ large enough)

 \Leftrightarrow

 $\quad \vec{v}' + \Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$

•
$$\vec{w} \leftarrow f(\vec{v}' + \Lambda_S)$$

$$\vec{v} \leftarrow D_{\vec{v}' + \Lambda_{\mathcal{S}}, \sigma}$$

• return
$$\vec{z} := \vec{v} - \vec{w}$$

 $ec{m{v}}-ec{m{w}}\sim D_{m{\Lambda}_{\mathcal{S}},\sigma,ec{m{c}}}$ (for some random center $ec{m{c}}$)

Lemma: O(B) samples from $D_{\Lambda_S,\sigma,\vec{c}}$ generate Λ_S with high probability

Heuristic 2 – summary

Algorithm ComputeSUnits

1: repeat

2: sample
$$\vec{v} := (\operatorname{Log}(x), (-n_{\mathfrak{p}})) \leftarrow D_{\sigma}$$

3:
$$\vec{w} \leftarrow \texttt{SampleVector}(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_\mathfrak{p}})$$

4:
$$\vec{z_i} := \vec{v} - \vec{w}$$

5: until $\mathcal{L}((\vec{z_i})_i)$ has good rank and volume

Heuristic 2 – summary

Algorithm ComputeSUnits

1: repeat

2: sample
$$\vec{v} := (\operatorname{Log}(x), (-n_{\mathfrak{p}})) \leftarrow D_{\sigma}$$

3:
$$\vec{w} \leftarrow \texttt{SampleVector}(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_\mathfrak{p}})$$

$$4: \quad \vec{z_i} := \vec{v} - \vec{w}$$

5: until $\mathcal{L}((\vec{z_i})_i)$ has good rank and volume

Theorem (ERH)

If SampleVector is correct, then ComputeSUnits computes a basis of Λ_S in time $\mathcal{T}(\text{SampleVector}) \cdot \operatorname{poly}(B)$.
Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ρ_K

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ho_K

Open question: is $\delta_{\mathcal{S}}[y] \approx u^{-u}$ or $\delta_{\mathcal{S}}[y] \approx \rho_{K}^{-1} \cdot u^{-u}$? (Reminder: $\delta_{\mathcal{S}}[y] = \text{density of } B\text{-smooth ideals of norm } \leq y$)

- ▶ can we improve our runtime?
- ▶ or are the runtime of the heuristic algorithms too optimistic?

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ho_K

Open question: is $\delta_{\mathcal{S}}[y] \approx u^{-u}$ or $\delta_{\mathcal{S}}[y] \approx \rho_{K}^{-1} \cdot u^{-u}$? (Reminder: $\delta_{\mathcal{S}}[y] = \text{density of } B\text{-smooth ideals of norm } \leq y$)

- ▶ can we improve our runtime?
- ▶ or are the runtime of the heuristic algorithms too optimistic?

Questions?