Rigorous computation of class group and unit group

Koen de Boer ${ }^{1} \quad$ Alice Pellet-Mary ${ }^{2} \quad$ Benjamin Wesolowski ${ }^{2}$

${ }^{1}$ CWI and Leiden university ${ }^{2}$ CNRS and Bordeaux university

ENSL/CWI/RHUL joint online cryptography seminars

Main result

We describe a (Monte Carlo) algorithm

- computing the class group and unit group of a number field K
- provably correct (assuming ERH)

Motivations

Lattice-based cryptography: use structured lattices for efficiency - module lattices

- ideal lattices (i.e., modules of dim 1)

Motivations

Lattice-based cryptography: use structured lattices for efficiency

- module lattices
- ideal lattices (i.e., modules of dim 1)

Cryptanalysis: recent algorithms computing short vectors in ideal lattices require to compute units and class groups

ideals lattices [CDW17]
(in cyclotomic fields)

Motivations

Lattice-based cryptography: use structured lattices for efficiency

- module lattices
- ideal lattices (i.e., modules of dim 1)

Cryptanalysis: recent algorithms computing short vectors in ideal lattices require to compute units and class groups

ideals lattices [CDW17]
(in cyclotomic fields)

Also: useful in algorithmic number theory

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K}

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark

(all algorithms assume ERH)

[HM89] Hafner, McCurley. A rigorous subexponential algorithm for computation of class groups. Journal of the American mathematical society.

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K}

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark
[Buc88]	fixed degree n	$L_{\Delta_{K}}(1 / 2)$	X

(all algorithms assume ERH)

[Buc88] Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K}

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark
[Buc88]	fixed degree n	$L_{\Delta_{K}}(1 / 2)$	X
[BF14]	arbitrary degree n	$L_{\Delta_{K}}(2 / 3+\varepsilon)$	X

(all algorithms assume ERH)

[BF14] Biasse, Fieker. Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics.

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K}

	Number fields	Complexity	Non heuristic
$[$ HM89 $]$	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark
$[$ Buc88 $]$	fixed degree n	$L_{\Delta_{K}}(1 / 2)$	X
$[$ BF14]	arbitrary degree n	$L_{\Delta_{K}}(2 / 3+\varepsilon)$	X
$\left[\begin{array}{c}\text { BF14,Gel17] } \\ {[B E F+17]}\end{array}\right.$	specific defining polynomial	as small as $L_{\Delta_{K}}(1 / 3)$	X

(all algorithms assume ERH)

[Gel17] Gélin. Class group computations in number fields and applications to cryptology. PhD thesis. [BEF+17] Biasse, Espitau, Fouque, Gélin, Kirchner. Computing generator in cyclotomic integer rings. Eurocrypt.

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K}

	Number fields	Complexity	Non heuristic
$[$ HM89 $]$	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark
$[$ Buc88 $]$	fixed degree n	$L_{\Delta_{K}}(1 / 2)$	X
$[$ BF14 $]$	arbitrary degree n	$L_{\Delta_{K}}(2 / 3+\varepsilon)$	X
$\left[\begin{array}{c}\text { [BF14,Gel17 }] \\ {[B E F+17]}\end{array}\right.$	specific defining polynomial	as small as $L_{\Delta_{K}}(1 / 3)$	X
$[$ BS16 $]$	arbitrary degree n	quantum poly	\checkmark

(all algorithms assume ERH)

[BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

History (algorithms computing units and class group)
Notation: $L_{x}(\alpha)=\exp \left(O\left(\log (x)^{\alpha} \cdot \log \log (x)^{1-\alpha}\right)\right), \quad K$ degree n and discriminant Δ_{K} ρ_{K} residue of the zeta function of K at 1

	Number fields	Complexity	Non heuristic
$[$ HM89 $]$	quadratic imaginary	$L_{\Delta_{K}}(1 / 2)$	\checkmark
$[$ Buc88 $]$	fixed degree n	$L_{\Delta_{K}}(1 / 2)$	X
$[$ BF14]	arbitrary degree n	$L_{\Delta_{K}}(2 / 3+\varepsilon)$	X
[BF14,Gel17] $[B E F+17]$	specific defining polynomial	as small as $L_{\Delta_{K}}(1 / 3)$	X
$[$ BS16 $]$	arbitrary degree n	quantum poly	\checkmark
This work	arbitrary degree n	$\rho_{K}\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right)$	\checkmark

(all algorithms assume ERH)

[BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Outline of the talk

(1) Some definitions

(2) Heuristic algorithms

(3) Removing the first heuristic
(4) Removing the second heuristic

Number fields and ideals

Number field: $K=\mathbb{Q}[X] /\left(X^{n}+1\right)$ and $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad\left(n=2^{k}\right)$ (or K any number field)

Number fields and ideals

Number field: $K=\mathbb{Q}[X] /\left(X^{n}+1\right)$ and $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad\left(n=2^{k}\right)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_{K}$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_{K}$

- $x+y \in I$
- $\alpha \cdot x \in I$

Number fields and ideals

Number field: $K=\mathbb{Q}[X] /\left(X^{n}+1\right)$ and $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad\left(n=2^{k}\right)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_{K}$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_{K}$

- $x+y \in I$
- $\alpha \cdot x \in I$
e.g., $x \cdot \mathcal{O}_{K}:=\left\{x \cdot y \mid y \in \mathcal{O}_{K}\right\}$ is a principal ideal

Number fields and ideals

Number field: $K=\mathbb{Q}[X] /\left(X^{n}+1\right)$ and $\mathcal{O}_{K}=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad\left(n=2^{k}\right)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_{K}$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_{K}$

- $x+y \in I$
- $\alpha \cdot x \in I$
e.g., $x \cdot \mathcal{O}_{K}:=\left\{x \cdot y \mid y \in \mathcal{O}_{K}\right\}$ is a principal ideal

If you prefer:

$$
\begin{array}{ccc}
\mathcal{O}_{K} & \leftrightarrow & \mathbb{Z} \\
I \subseteq \mathcal{O}_{K} & \leftrightarrow & x \in \mathbb{Z} \text { or } x \cdot \mathbb{Z} \\
I:=\mathcal{O}_{K} & \leftrightarrow & 1 \text { or } \mathbb{Z}
\end{array}
$$

Properties of ideals

Arithmetic properties:

- Multiplication / Inverse: I $\cdot \mathrm{J}, \boldsymbol{I} \cdot I^{-1}=\mathcal{O}_{K}$
- Divisibility: $x \in I \Leftrightarrow x \cdot \mathcal{O}_{K}=\boldsymbol{I} \cdot J \quad(6 \in 2 \cdot \mathbb{Z}, 6=2 \cdot 3)$
- Unique factorization: $\boldsymbol{I}=\prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}} \quad\left(n_{\mathfrak{p}} \geq 0\right)$
- Size: $\mathcal{N}(I)(\leftrightarrow|\mathbb{Z} / \times \mathbb{Z}|=|x|$ for $x \in \mathbb{Z})$
- B-smooth: $I=\prod_{\mathcal{N}(\mathfrak{p}) \leq B} \mathfrak{p}^{n_{\mathfrak{p}}}$

Properties of ideals

Arithmetic properties:

- Multiplication / Inverse: I $\cdot J, I \cdot I^{-1}=\mathcal{O}_{K}$
- Divisibility: $x \in I \Leftrightarrow x \cdot \mathcal{O}_{K}=\boldsymbol{I} \cdot J \quad(6 \in 2 \cdot \mathbb{Z}, 6=2 \cdot 3)$
- Unique factorization: $\boldsymbol{I}=\prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}} \quad\left(n_{\mathfrak{p}} \geq 0\right)$
- Size: $\mathcal{N}(I)(\leftrightarrow|\mathbb{Z} / \times \mathbb{Z}|=|x|$ for $x \in \mathbb{Z})$
- B-smooth: $I=\prod_{\mathcal{N}(\mathfrak{p}) \leq B} \mathfrak{p}^{n_{p}}$

Geometric properties:

- Embedding:

$$
\sigma: K \rightarrow \mathbb{C}^{n}
$$

$$
x \mapsto\left(\sigma_{1}(x), \cdots, \sigma_{n}(x)\right) \quad\left(\sigma_{i} \text { 's are field morphisms }\right)
$$

- Lattices: $\sigma(I) \subset \mathbb{C}^{n}$ is a lattice (of rank n)
- Size: $\|x\|:=\|\sigma(x)\|_{2} \quad\left(x \in \mathcal{O}_{K}\right)$

S-units

Notations:

- \mathcal{S} is a finite set of prime ideals of \mathcal{O}_{K}
- Log : $K \rightarrow \mathbb{R}^{n}$ is the logarithmic embedding $\left(\log (x)=\left(\log \left|\sigma_{1}(x)\right|, \cdots, \log \left|\sigma_{n}(x)\right|\right)\right.$, with σ_{i} the complex embeddings of $\left.K\right)$

S-units

Notations:

- \mathcal{S} is a finite set of prime ideals of \mathcal{O}_{K}
- Log: $K \rightarrow \mathbb{R}^{n}$ is the logarithmic embedding $\left(\log (x)=\left(\log \left|\sigma_{1}(x)\right|, \cdots, \log \left|\sigma_{n}(x)\right|\right)\right.$, with σ_{i} the complex embeddings of $\left.K\right)$

Definition

The Log- \mathcal{S}-unit lattice is

$$
\Lambda_{\mathcal{S}}:=\left\{\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}\right) \mid x \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}\right\} \subset \mathbb{R}^{n} \times \mathbb{Z}^{|\mathcal{S}|}
$$

$$
\left(\text { e.g., } \mathcal{S}=\{2,3,5\}, x=6, \quad 6=2^{1} \cdot 3^{1} \cdot 5^{0} \Rightarrow(\log (6),-1,-1,0) \in \Lambda_{S}\right)
$$

S-units

Notations:

- \mathcal{S} is a finite set of prime ideals of \mathcal{O}_{K}
- Log: $K \rightarrow \mathbb{R}^{n}$ is the logarithmic embedding $\left(\log (x)=\left(\log \left|\sigma_{1}(x)\right|, \cdots, \log \left|\sigma_{n}(x)\right|\right)\right.$, with σ_{i} the complex embeddings of $\left.K\right)$

Definition

The Log- \mathcal{S}-unit lattice is

$$
\Lambda_{\mathcal{S}}:=\left\{\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p} \in \mathcal{S}}\right) \mid x \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}\right\} \subset \mathbb{R}^{n} \times \mathbb{Z}^{|\mathcal{S}|}
$$

$$
\text { (e.g., } \left.\mathcal{S}=\{2,3,5\}, x=6, \quad 6=2^{1} \cdot 3^{1} \cdot 5^{0} \Rightarrow(\log (6),-1,-1,0) \in \Lambda_{s}\right)
$$

Computing \mathcal{S}-units $=$ computing a basis of $\Lambda_{\mathcal{S}}$ (or a generating set)

Theorem and applications

Theorem
Assuming ERH, there is a Monte Carlo algorithm which computes $\Lambda_{\mathcal{S}}$ in expected time polynomial in its input length, in ρ_{K}, in $L_{\Delta_{K}}(1 / 2)$ and in $L_{n^{n}}(2 / 3)$.

Reminder: ρ_{K} is the residue at 1 of ζ_{K}

Theorem and applications

Theorem

Assuming ERH, there is a Monte Carlo algorithm which computes $\Lambda_{\mathcal{S}}$ in expected time polynomial in its input length, in ρ_{K}, in $L_{\Delta_{K}}(1 / 2)$ and in $L_{n^{n}}(2 / 3)$.

Reminder: ρ_{K} is the residue at 1 of ζ_{K}
Applications: we can also compute

- unit group ($\mathcal{S}=\emptyset$)
- class-group (\mathcal{S} generates Cl_{K})
- generators of principal ideals
- class-group discrete logarithms

Outline of the talk

(1) Some definitions

(2) Heuristic algorithms

(3) Removing the first heuristic

Computing a vector of $\Lambda_{\mathcal{S}}$

Definition: $\mathcal{S}=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\} \quad$ (for some B to be determined)

Computing a vector of $\Lambda_{\mathcal{S}}$
Definition: $\mathcal{S}=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\} \quad$ (for some B to be determined)

Algorithm SampleVector
1: repeat
2: \quad Sample random $x \in \mathcal{O}_{K}$
3: until $\times \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
4: return $\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Computing a vector of $\Lambda_{\mathcal{S}}$
Definition: $\mathcal{S}=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\} \quad$ (for some B to be determined)

Algorithm SampleVector
1: repeat
2: \quad Sample random $x \in \mathcal{O}_{K}$
3: until $\times \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
4: return $\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Correctness:

Computing a vector of $\Lambda_{\mathcal{S}}$
Definition: $\mathcal{S}=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\} \quad$ (for some B to be determined)

Algorithm SampleVector
1: repeat
2: \quad Sample random $x \in \mathcal{O}_{K}$
3: until $\times \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
4: return $\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Correctness:
Complexity: $O\left(T_{\text {sample }} \cdot p_{\text {smooth }}^{-1} \cdot|\mathcal{S}|\right)$

- $T_{\text {sample }}$: time to sample x
- $p_{\text {smooth }}$: probability that $x \mathcal{O}_{K}$ is smooth
- $|\mathcal{S}|=O(B)$: time to test smoothness

Computing a vector of $\Lambda_{\mathcal{S}}$
Definition: $\mathcal{S}=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\} \quad$ (for some B to be determined)

Algorithm SampleVector
1: repeat
2: \quad Sample random $x \in \mathcal{O}_{K}$
3: until $\times \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
4: return $\left(\log (x),\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Correctness:
Complexity: $O\left(T_{\text {sample }} \cdot p_{\text {smooth }}^{-1} \cdot|\mathcal{S}|\right)$

- $T_{\text {sample }}$: time to sample x
- $p_{\text {smooth }}$: probability that $x \mathcal{O}_{K}$ is smooth
- $|\mathcal{S}|=O(B)$: time to test smoothness

How to sample x ? - Buchmann

Buchmann:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=$ Shortest_Vector(I)

$$
\left(x \in I \Rightarrow x \mathcal{O}_{K}=I \cdot J\right)
$$

How to sample x ? - Buchmann

Buchmann:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=$ Shortest_Vector(I)

$$
\left(x \in I \Rightarrow x \mathcal{O}_{K}=I \cdot J\right)
$$

$x \mathcal{O}_{K}$ smooth $\Leftrightarrow x I^{-1}$ smooth
$\left(\Rightarrow\right.$ the smaller $\mathcal{N}\left(\left.x\right|^{-1}\right)$, the better $)$

How to sample x ? - Buchmann

Buchmann:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=$ Shortest_Vector(I)

$$
\left(x \in I \Rightarrow x \mathcal{O}_{K}=I \cdot J\right)
$$

$x \mathcal{O}_{K}$ smooth $\Leftrightarrow x I^{-1}$ smooth
$\left(\Rightarrow\right.$ the smaller $\mathcal{N}\left(x l^{-1}\right)$, the better)

Complexity: $2^{O(n)}$ (for Shortest_Vector(l))

How to sample x ? - Buchmann

Buchmann:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=$ Shortest_Vector(I)

$$
\left(x \in I \Rightarrow x \mathcal{O}_{K}=I \cdot J\right)
$$

$x \mathcal{O}_{K}$ smooth $\Leftrightarrow x I^{-1}$ smooth (\Rightarrow the smaller $\mathcal{N}\left(\left.x\right|^{-1}\right)$, the better)

Complexity: $2^{O(n)}$ (for Shortest_Vector(l))

Subexponential only for fixed n

How to sample x ? - Biasse-Fieker

Biasse-Fieker:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=\mathrm{BKZ}_{\beta}(I) \quad$ (blocksize β)

How to sample x ? - Biasse-Fieker

Biasse-Fieker:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=\mathrm{BKZ}_{\beta}(I) \quad$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

How to sample x ? - Biasse-Fieker

Biasse-Fieker:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=\mathrm{BKZ}_{\beta}(I) \quad$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)
Shortness: $\|x\|_{\infty} \leq n^{n / \beta} \cdot \Delta_{K}^{1 /(2 n)} \cdot \mathcal{N}(I)^{1 / n}$

How to sample x ? - Biasse-Fieker

Biasse-Fieker:

- sample random ideal $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- $x=\mathrm{BKZ}_{\beta}(I) \quad$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)
Shortness: $\|x\|_{\infty} \leq n^{n / \beta} \cdot \Delta_{K}^{1 /(2 n)} \cdot \mathcal{N}(I)^{1 / n}$

$$
\Rightarrow \quad \mathcal{N}\left(x I^{-1}\right) \leq n^{n^{2} / \beta} \cdot \sqrt{\Delta_{K}}
$$

Intermediate summary

$\mathcal{S}:=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\}$

Algorithm SampleVector
1: repeat
2: \quad Sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
3: $\quad x \leftarrow \mathrm{BKZ}_{\beta}(I)$
4: until $x I^{-1}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
5: return $\left(\log (x),\left(-n_{\mathfrak{p}}-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Intermediate summary

$\mathcal{S}:=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\}$

Algorithm SampleVector

1: repeat
2: \quad Sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
3: $\quad x \leftarrow \mathrm{BKZ}_{\beta}(I)$
4: until $x I^{-1}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
5: return $\left(\log (x),\left(-n_{\mathfrak{p}}-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Complexity:

$$
O\left(T_{\text {sample }} \cdot p_{\text {smooth }}^{-1} \cdot|\mathcal{S}|\right)=2^{O(\beta)} \cdot B \cdot p_{\text {smooth }}^{-1}
$$

Intermediate summary

$\mathcal{S}:=\{$ prime $\mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B\}$

Algorithm SampleVector

1: repeat
2: \quad Sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
3: $\quad x \leftarrow \mathrm{BKZ}_{\beta}(I)$
4: until $x I^{-1}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
5: return $\left(\log (x),\left(-n_{\mathfrak{p}}-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Complexity:

$$
O\left(T_{\text {sample }} \cdot p_{\text {smooth }}^{-1} \cdot|\mathcal{S}|\right)=2^{O(\beta)} \cdot B \cdot p_{\text {smooth }}^{-1}
$$

Smoothness probability

Notation: $p_{y, B}=$ proba that a uniformly random ideal of norm $\leq y$ is B-smooth

Smoothness probability

Notation: $p_{y, B}=$ proba that a uniformly random ideal of norm $\leq y$ is B-smooth

Asymptotically: $p_{y, B} \sim \rho(u) \approx u^{-u}(\rho$ Dickman function, $u=\log y / \log B)$

Smoothness probability

Notation: $p_{y, B}=$ proba that a uniformly random ideal of norm $\leq y$ is B-smooth

Asymptotically: $p_{y, B} \sim \rho(u) \approx u^{-u}(\rho$ Dickman function, $u=\log y / \log B)$ © K fixed and B, u tending to infinity

Smoothness probability

Notation: $p_{y, B}=$ proba that a uniformly random ideal of norm $\leq y$ is B-smooth

Asymptotically: $p_{y, B} \sim \rho(u) \approx u^{-u}(\rho$ Dickman function, $u=\log y / \log B)$
$\triangle K$ fixed and B, u tending to infinity
Heuristic: $p_{\text {smooth }} \approx u^{-u}$ where $u=\frac{\log \mathcal{N}\left(\left.x\right|^{-1}\right)}{\log B}$

Smoothness probability

Notation: $p_{y, B}=$ proba that a uniformly random ideal of norm $\leq y$ is B-smooth

Asymptotically: $p_{y, B} \sim \rho(u) \approx u^{-u}(\rho$ Dickman function, $u=\log y / \log B)$
$\triangle K$ fixed and B, u tending to infinity
Heuristic: $p_{\text {smooth }} \approx u^{-u}$ where $u=\frac{\log \mathcal{N}\left(\left.x\right|^{-1}\right)}{\log B}$

2 assumptions hidden:

- the provable asymptotic bounds require huge B to be effective (roughly $B \gtrsim 2^{2^{n}}$)
- $x I^{-1}$ is not a random ideal of bounded norm

Sampling one vector - summary

Algorithm SampleVector
1: repeat
2: \quad Sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
3: $\quad x \leftarrow \mathrm{BKZ}_{\beta}(I)$
4: until $x I^{-1}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
5: return $\left(\log (x),\left(-n_{\mathfrak{p}}-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Complexity (heuristic):

$$
2^{O(\beta)} \cdot B \cdot u^{u} \quad \text { with } u=\frac{\log \mathcal{N}\left(\left.x\right|^{-1}\right)}{\log B} \leq \frac{n^{2} \log n / \beta+\log \left|\Delta_{K}\right| / 2}{\log B}
$$

Sampling one vector - summary

Algorithm SampleVector

1: repeat

2: \quad Sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
3: $\quad x \leftarrow \mathrm{BKZ}_{\beta}(I)$
4: until $x I^{-1}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
5: return $\left(\log (x),\left(-n_{\mathfrak{p}}-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

Complexity (heuristic):

$$
2^{O(\beta)} \cdot B \cdot u^{u} \quad \text { with } u=\frac{\log \mathcal{N}\left(\left.x\right|^{-1}\right)}{\log B} \leq \frac{n^{2} \log n / \beta+\log \left|\Delta_{K}\right| / 2}{\log B}
$$

Instantiating:

- $\beta=n^{2 / 3}$
- $B=L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)$

Total complexity: $L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)$

Computing the full lattice $\Lambda_{\mathcal{S}}$

Remark: One can efficiently approximate $\operatorname{det}\left(\Lambda_{\mathcal{S}}\right)=\operatorname{Reg}_{K} \cdot h_{K}$ (\mathcal{S} generates the class-group)

Computing the full lattice $\Lambda_{\mathcal{S}}$

Remark: One can efficiently approximate $\operatorname{det}\left(\Lambda_{\mathcal{S}}\right)=\operatorname{Reg}_{K} \cdot h_{K}$
(\mathcal{S} generates the class-group)
Algorithm ComputeSUnits
1: repeat
2: $\quad \boldsymbol{z}_{\boldsymbol{i}} \leftarrow$ SampleVector ()
3: until $\mathcal{L}\left(\left(\boldsymbol{z}_{i}\right)_{i}\right)$ is a lattice with the desired rank and det
4: Compute a basis \boldsymbol{B} of $\mathcal{L}\left(\left(\boldsymbol{z}_{\boldsymbol{i}}\right)_{i}\right) \quad$ (linear algebra)
5: return B

Computing the full lattice $\Lambda_{\mathcal{S}}$

Remark: One can efficiently approximate $\operatorname{det}\left(\Lambda_{\mathcal{S}}\right)=\operatorname{Reg}_{K} \cdot h_{K}$
(\mathcal{S} generates the class-group)
Algorithm ComputeSUnits
1: repeat
2: $\quad \boldsymbol{z}_{\boldsymbol{i}} \leftarrow$ SampleVector ()
3: until $\mathcal{L}\left(\left(\boldsymbol{z}_{i}\right)_{i}\right)$ is a lattice with the desired rank and det
4: Compute a basis \boldsymbol{B} of $\mathcal{L}\left(\left(\boldsymbol{z}_{\boldsymbol{i}}\right)_{i}\right) \quad$ (linear algebra)
5: return B

Correctness:

Computing the full lattice $\Lambda_{\mathcal{S}}$

Remark: One can efficiently approximate $\operatorname{det}\left(\Lambda_{\mathcal{S}}\right)=\operatorname{Reg}_{K} \cdot h_{K}$
(\mathcal{S} generates the class-group)
Algorithm ComputeSUnits
1: repeat
2: $\quad \boldsymbol{z}_{i} \leftarrow$ SampleVector ()
3: until $\mathcal{L}\left(\left(\boldsymbol{z}_{i}\right)_{i}\right)$ is a lattice with the desired rank and det
4: Compute a basis \boldsymbol{B} of $\mathcal{L}\left(\left(\boldsymbol{z}_{\boldsymbol{i}}\right)_{i}\right) \quad$ (linear algebra)
5: return B

Correctness:

Heuristic: $O(B)$ vectors from SampleVector () generate $\Lambda_{\mathcal{S}}$ with good probability $\quad\left(\mathrm{rk}\left(\Lambda_{S}\right)=O(B)\right)$

Computing the full lattice $\Lambda_{\mathcal{S}}$

Remark: One can efficiently approximate $\operatorname{det}\left(\Lambda_{\mathcal{S}}\right)=\operatorname{Reg}_{K} \cdot h_{K}$
(\mathcal{S} generates the class-group)
Algorithm ComputeSUnits
1: repeat
2: $\quad \boldsymbol{z}_{i} \leftarrow$ SampleVector ()
3: until $\mathcal{L}\left(\left(\boldsymbol{z}_{i}\right)_{i}\right)$ is a lattice with the desired rank and det
4: Compute a basis \boldsymbol{B} of $\mathcal{L}\left(\left(\boldsymbol{z}_{\boldsymbol{i}}\right)_{i}\right) \quad$ (linear algebra)
5: return B

Correctness:

Heuristic: $O(B)$ vectors from SampleVector () generate $\Lambda_{\mathcal{S}}$ with good probability $\quad\left(\mathrm{rk}\left(\Lambda_{S}\right)=O(B)\right)$

Complexity: $\operatorname{poly}(B)=L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)$

Heuristics - summary

Heuristic 1: $p_{\text {smooth }} \approx u^{-u}$ where $u=\frac{\log \mathcal{N}\left(\left.x\right|^{-1}\right)}{\log B}$
1.1. the asymptotic bounds hold even for smallish B 's
1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristics - summary

Heuristic 1: $p_{\text {smooth }} \approx u^{-u}$ where $u=\frac{\left.\log N(x)^{-1}\right)}{\log B}$
1.1. the asymptotic bounds hold even for smallish B 's
1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristic 2: $O(B)$ vectors from SampleVector() generate $\Lambda_{\mathcal{S}}$ with good probability

Outline of the talk

(1) Some definitions

(2) Heuristic algorithms
(3) Removing the first heuristic

Provable sampling in ideals [BDPW22]

```
Algorithm SampleInIdeal
    1: sample random I = \
    2: }\boldsymbol{B}\leftarrowBKZ\mp@subsup{Z}{\beta}{}(I)\quad(B\mathrm{ reduced basis of I)
    3: sample random x\inI (using small basis B)
    4: return ( }x,I\mathrm{ )
```


Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal
1: sample random $I=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
2: $\boldsymbol{B} \leftarrow B K Z_{\beta}(I)$
(B reduced basis of I)
3: sample random $x \in I \quad$ (using small basis B)
4: return (x, I)

Theorem (ERH) [BDPW22]

For any infinite set \mathcal{T} of ideals, it holds that

$$
\operatorname{Pr}_{(x, l) \leftarrow \text { SampleInIdeal }}\left(x l^{-1} \in \mathcal{T}\right) \geq \frac{\delta_{\mathcal{T}}\left[n^{n^{2} / \beta} \cdot \sqrt{\Delta_{K}}\right]}{3} .
$$

Definition: $\delta_{\mathcal{T}}[y] \approx \frac{|\{\mathfrak{a} \in \mathcal{T} \mid \mathcal{N}(\mathfrak{a}) \leq y\}|}{\{\mathfrak{a} \text { ideal } \mid \mathcal{N}(\mathfrak{a}) \leq y\} \mid} \quad$ (density of \mathcal{T} at y)

Heuristic 1.2

Heuristic 1.2: $x I^{-1}$ behaves like a uniform ideal of bounded norm
Can be proven using previous slide up to

- changing slightly the sampling procedure
- decreasing by 3 the success probability

Heuristic 1.1

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B 's $\quad(u=\log y / \log B)$

Heuristic 1.1

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B^{\prime} s $\quad(u=\log y / \log B)$

- We could not prove it, but we proved

Lemma

For any $B \geq \Omega\left(\left(n+\log \Delta_{K}\right)^{3}\right)$,

$$
\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1} .
$$

Heuristic 1.1

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B^{\prime} s $\quad(u=\log y / \log B)$

- We could not prove it, but we proved

Lemma

For any $B \geq \Omega\left(\left(n+\log \Delta_{K}\right)^{3}\right)$,

$$
\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1} .
$$

Discussion:

- for cyclotomic fields, $\rho_{K}=\operatorname{poly}(n)$

Heuristic 1.1

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B^{\prime} s $\quad(u=\log y / \log B)$

- We could not prove it, but we proved

Lemma

For any $B \geq \Omega\left(\left(n+\log \Delta_{K}\right)^{3}\right)$,

$$
\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1} .
$$

Discussion:

- for cyclotomic fields, $\rho_{K}=\operatorname{poly}(n)$
- there exist fields where $\rho_{K}=\exp (n)$

Heuristic 1.1

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small $B^{\prime} \mathrm{s} \quad(u=\log y / \log B)$

- We could not prove it, but we proved

Lemma

For any $B \geq \Omega\left(\left(n+\log \Delta_{K}\right)^{3}\right)$,

$$
\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_{K}^{-1} .
$$

Discussion:

- for cyclotomic fields, $\rho_{K}=\operatorname{poly}(n)$
- there exist fields where $\rho_{K}=\exp (n)$
- is the bound tight?
- If yes, this impacts also the heuristic algorithm

Heuristic 1 - summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure (same asymptotic complexity)
- dividing $p_{\text {smooth }}$ by ρ_{K}

Heuristic 1 - summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure
- dividing $p_{\text {smooth }}$ by ρ_{K}

Theorem (ERH)

There is an algorithm SampleVector that computes $\boldsymbol{v} \in \Lambda_{\mathcal{S}}$ in time

$$
\rho_{K} \cdot\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right) .
$$

Outline of the talk

(1) Some definitions

(2) Heuristic algorithms
(3) Removing the first heuristic
(4) Removing the second heuristic

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

- computes $\boldsymbol{v} \in \Lambda_{\mathcal{S}}$
- in time

$$
\rho_{K} \cdot\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right)
$$

Variation on SampleVector

Reminder
There is an algorithm SampleVector that

- computes $x \in K$ and $\left(n_{\mathfrak{p}}\right)_{\mathfrak{p}} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x \mathcal{O}_{K}=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{p}}$
- in time

$$
\rho_{K} \cdot\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right) .
$$

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

- takes as input an ideal /
- computes $x \in K$ and $\left(n_{\mathfrak{p}}\right)_{\mathfrak{p}} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x \mathcal{O}_{K}=1 \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$
- in time

$$
\rho_{K} \cdot\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right) .
$$

Variation on SampleVector

Reminder

There is an algorithm SampleVector that

- takes as input an ideal /
- computes $x \in K$ and $\left(n_{\mathfrak{p}}\right)_{\mathfrak{p}} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x \mathcal{O}_{K}=l \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$
- in time

$$
\rho_{K} \cdot\left(L_{\Delta_{K}}(1 / 2)+L_{n^{n}}(2 / 3)\right)
$$

From now on, we use SampleVector in a black-box way

Heuristic 2 - main idea

```
Algorithm RandomVector
    1: sample random \(\boldsymbol{v}:=\left(\log x,\left(-n_{\mathfrak{p}}\right)\right) \quad\left(x \mathcal{O}_{K} \neq \prod_{p \in \mathcal{S}} \mathfrak{p}^{n_{p}}\right)\)
    2: define \(I:=x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}\)
    3: \(\boldsymbol{w}:=\left(\log y,\left(-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right) \leftarrow\) SampleVector (I) \(\quad\left(y \mathcal{O}_{K}=1 \cdot \Pi p^{m_{\mathfrak{p}}}\right)\)
```

 4: return \(\boldsymbol{w}-\boldsymbol{v}\)

Heuristic 2 - main idea

Algorithm RandomVector
1: sample random $\boldsymbol{v}:=\left(\log x,\left(-n_{\mathfrak{p}}\right)\right) \quad\left(x \mathcal{O}_{k} \neq \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{p}}\right)$
2: define $I:=x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}$
3: $\boldsymbol{w}:=\left(\log y,\left(-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right) \leftarrow$ SampleVector (I) $\quad\left(y \mathcal{O}_{K}=1 \cdot \Pi p^{m_{\mathfrak{p}}}\right)$
4: return $\boldsymbol{w}-\boldsymbol{v}$

Correctness: $y x^{-1} \cdot \mathcal{O}_{K}=\prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}}-n_{\mathfrak{p}}} \Rightarrow \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{\mathcal{S}}$

Heuristic 2 - main idea

Algorithm RandomVector
1: sample random $\boldsymbol{v}:=\left(\log x,\left(-n_{\mathfrak{p}}\right)\right) \quad\left(x \mathcal{O}_{K} \neq \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{p}}\right)$
2: define $I:=x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}$
3: $\boldsymbol{w}:=\left(\log y,\left(-m_{\mathfrak{p}}\right)_{\mathfrak{p}}\right) \leftarrow$ SampleVector (I) $\quad\left(y \mathcal{O}_{K}=1 \cdot \Pi p^{m_{p}}\right)$
4: return $\boldsymbol{w}-\boldsymbol{v}$

Correctness: $y x^{-1} \cdot \mathcal{O}_{K}=\prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}}-n_{\mathfrak{p}}} \Rightarrow \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{\mathcal{S}}$
Intuition: $\boldsymbol{w}-\boldsymbol{v}$ is random in $\Lambda_{\mathcal{S}}$ (and independent from other vectors obtained so far) because SampleVector cannot guess v from $/$.

More details

$$
\begin{aligned}
\text { Reminder: } & \bullet \boldsymbol{v}=\left(\log x,\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right) \\
& \triangleright I=x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} \\
& \vee \boldsymbol{w}=\operatorname{SampleVector}(I) \quad\left(\Rightarrow \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{\mathcal{S}}\right)
\end{aligned}
$$

More details

$$
\begin{aligned}
\text { Reminder: } & \triangleright v=\left(\log x,\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right) \\
& \triangleright I=x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} \\
& \triangleright \boldsymbol{w}=\operatorname{SampleVector}(I) \quad\left(\Rightarrow \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{\mathcal{S}}\right)
\end{aligned}
$$

Claim: \boldsymbol{w} only depends on $\boldsymbol{v} \bmod \Lambda_{S}$ and $\boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S}$

More details

Reminder: $\quad \boldsymbol{v}=\left(\log x,\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

- $\quad I=x \cdot \prod_{p} \mathfrak{p}^{-n_{p}}$
- $\boldsymbol{w}=\operatorname{SampleVector}(\mathrm{I}) \quad\left(\Rightarrow w-v \in \Lambda_{\mathcal{S}}\right)$

Claim: \boldsymbol{w} only depends on $\boldsymbol{v} \bmod \Lambda_{S}$ and $\boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S}$

Proof: $x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}=x^{\prime} \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}^{\prime}} \Leftrightarrow \boldsymbol{v}=\boldsymbol{v}^{\prime} \bmod \Lambda_{\mathcal{S}}$

More details

Reminder: $\quad \boldsymbol{v}=\left(\log x,\left(-n_{\mathfrak{p}}\right)_{\mathfrak{p}}\right)$

- $\quad I=x \cdot \prod_{p} \mathfrak{p}^{-n_{p}}$
- $\boldsymbol{w}=\operatorname{SampleVector}(\mathrm{I}) \quad\left(\Rightarrow w-v \in \Lambda_{\mathcal{S}}\right)$

Claim: \boldsymbol{w} only depends on $\boldsymbol{v} \bmod \Lambda_{S}$ and $\boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S}$

Proof: $x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}=x^{\prime} \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}^{\prime}} \Leftrightarrow \boldsymbol{v}=\boldsymbol{v}^{\prime} \bmod \Lambda_{\mathcal{S}}$
$\Rightarrow I$ only depends on $\boldsymbol{v}+\Lambda_{\mathcal{S}}$
$\Rightarrow \boldsymbol{w}$ only depends on $\boldsymbol{v}+\Lambda_{\mathcal{S}}$
(provided we have a canonical representation for I)

Distribution of v

$$
\left.\boldsymbol{w}=f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right) \quad \text { and } \quad \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S} \quad \text { (f might be randomized }\right)
$$

Distribution of v

$$
\boldsymbol{w}=f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right) \quad \text { and } \quad \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S} \quad(f \text { might be randomized })
$$

Consequence: ($D_{\Lambda, \sigma}$ centered discrete gaussian distribution over Λ, deviation σ)

- $\boldsymbol{v} \leftarrow D_{\sigma}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right)$
- return $\boldsymbol{z}:=\boldsymbol{v}-\boldsymbol{w}$
$-\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}}\right)$
- $\boldsymbol{v} \leftarrow D_{\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}}, \sigma}$
- return $\boldsymbol{z}:=\boldsymbol{v}-\boldsymbol{w}$

Distribution of v

$$
\left.\boldsymbol{w}=f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right) \quad \text { and } \quad \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S} \quad \text { (f might be randomized }\right)
$$

Consequence: ($D_{\Lambda, \sigma}$ centered discrete gaussian distribution over Λ, deviation σ)

- $\boldsymbol{v} \leftarrow D_{\sigma}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right)$
- return $\boldsymbol{z}:=\boldsymbol{v}-\boldsymbol{w}$
$-\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}}\right)$
- $\boldsymbol{v} \leftarrow D_{\mathbf{v}^{\prime}+\Lambda_{\mathcal{S}}, \sigma}$
- return $\boldsymbol{z}:=\boldsymbol{v}-\boldsymbol{w}$

$$
\left.\boldsymbol{v}-\boldsymbol{w} \sim D_{\Lambda_{\mathcal{S}}, \sigma, \boldsymbol{c}} \quad \text { (for some random center } c=-w\right)
$$

Distribution of v

$$
\boldsymbol{w}=f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right) \quad \text { and } \quad \boldsymbol{w}-\boldsymbol{v} \in \Lambda_{S} \quad(f \text { might be randomized })
$$

Consequence: ($D_{\Lambda, \sigma}$ centered discrete gaussian distribution over Λ, deviation σ)

- $\boldsymbol{v} \leftarrow D_{\sigma}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}+\Lambda_{\mathcal{S}}\right)$
(if σ large enough)
$-\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}} \leftarrow D_{\sigma} \bmod \Lambda_{\mathcal{S}}$
- $\boldsymbol{w} \leftarrow f\left(\boldsymbol{v}^{\prime}+\Lambda_{\mathcal{S}}\right)$
- $\mathbf{v} \leftarrow D_{\mathbf{v}^{\prime}+\Lambda_{\mathcal{S}}, \sigma}$
- return $\boldsymbol{z}:=\boldsymbol{v}-\boldsymbol{w}$

$$
\left.\boldsymbol{v}-\boldsymbol{w} \sim D_{\Lambda_{\mathcal{S}}, \sigma, \boldsymbol{c}} \quad \text { (for some random center } c=-w\right)
$$

Lemma: $O(B)$ samples from $D_{\Lambda_{\mathcal{S}}, \sigma, c}$ generate $\Lambda_{\mathcal{S}}$ with high probability

Heuristic 2 - summary

Algorithm ComputeSUnits
1: for $O(B)$ loops do
2: \quad sample $\boldsymbol{v}:=\left(\log (x),\left(-n_{\mathfrak{p}}\right)\right) \leftarrow D_{\sigma}$
3: $\quad \boldsymbol{w} \leftarrow \operatorname{SampleVector}\left(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}\right)$
4: $\quad \boldsymbol{z}_{\boldsymbol{i}}:=\boldsymbol{v}-\boldsymbol{w}$
5: end for
6: return $\left(z_{i}\right)_{i}$

Heuristic 2 - summary

Algorithm ComputeSUnits

1: for $O(B)$ loops do

2: \quad sample $\boldsymbol{v}:=\left(\log (x),\left(-n_{\mathfrak{p}}\right)\right) \leftarrow D_{\sigma}$
3: $\boldsymbol{w} \leftarrow \operatorname{SampleVector}\left(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}\right)$
4: $\quad \boldsymbol{z}_{\boldsymbol{i}}:=\boldsymbol{v}-\boldsymbol{w}$
5: end for
6: return $\left(z_{i}\right)_{i}$

Theorem (ERH)

If SampleVector is correct, then ComputeSUnits computes a generating set of $\Lambda_{\mathcal{S}}$ with high probability in time T (SampleVector) $\cdot \operatorname{poly}(B)$.

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ρ_{K}

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ρ_{K}

Open question 1: is $\quad \delta_{\mathcal{S}}[y] \approx u^{-u} \quad$ or $\quad \delta_{\mathcal{S}}[y] \approx \rho_{K}^{-1} \cdot u^{-u}$? (Reminder: $\delta_{\mathcal{S}}[y]=$ density of B-smooth ideals of norm $\leq y$)

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ρ_{K}

Open question 1: is $\quad \delta_{\mathcal{S}}[y] \approx u^{-u} \quad$ or $\quad \delta_{\mathcal{S}}[y] \approx \rho_{K}^{-1} \cdot u^{-u}$? (Reminder: $\delta_{\mathcal{S}}[y]=$ density of B-smooth ideals of norm $\leq y$)

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Open question 2: Las Vegas algorithm instead of Monte Carlo? (check the precision needed for the linear algebra step)

Conclusion

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- the run time is increased by a factor ρ_{K}

Open question 1: is $\quad \delta_{\mathcal{S}}[y] \approx u^{-u} \quad$ or $\quad \delta_{\mathcal{S}}[y] \approx \rho_{K}^{-1} \cdot u^{-u}$? (Reminder: $\delta_{\mathcal{S}}[y]=$ density of B-smooth ideals of norm $\leq y$)

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Open question 2: Las Vegas algorithm instead of Monte Carlo? (check the precision needed for the linear algebra step)

Questions?

