Rigorous computation of class group and unit group

Koen de Boer¹ Alice Pellet-Mary² Benjamin Wesolowski²

¹ CWI and Leiden university ² CNRS and Bordeaux university

ENSL/CWI/RHUL joint online cryptography seminars

Main result

We describe a (Monte Carlo) algorithm

- ightharpoonup computing the class group and unit group of a number field K
- provably correct (assuming ERH)

Motivations

Lattice-based cryptography: use structured lattices for efficiency

- module lattices
- ▶ ideal lattices (i.e., modules of dim 1)

Motivations

Lattice-based cryptography: use structured lattices for efficiency

- module lattices
- ▶ ideal lattices (i.e., modules of dim 1)

Cryptanalysis: recent algorithms computing short vectors in ideal lattices require to compute units and class groups

[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

Motivations

Lattice-based cryptography: use structured lattices for efficiency

- module lattices
- ▶ ideal lattices (i.e., modules of dim 1)

Cryptanalysis: recent algorithms computing short vectors in ideal lattices require to compute units and class groups

Also: useful in algorithmic number theory

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓

(all algorithms assume ERH)

[HM89] Hafner, McCurley. A rigorous subexponential algorithm for computation of class groups. Journal of the American mathematical society.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_K}(1/2)$	Х

(all algorithms assume ERH)

[Buc88] Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_K}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_K}(2/3+\varepsilon)$	×

(all algorithms assume ERH)

[[]BF14] Biasse, Fieker. Subexponential class group and unit group computation in large degree number fields. LMS Journal of Computation and Mathematics.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_K}(1/2)$	×
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_{\kappa}}(2/3+\varepsilon)$	×
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_K}(1/3)$	X

(all algorithms assume ERH)

[BEF+17] Biasse, Espitau, Fouque, Gélin, Kirchner. Computing generator in cyclotomic integer rings. Eurocrypt.

[[]Gel17] Gélin. Class group computations in number fields and applications to cryptology. PhD thesis.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(1/2)$	X
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(2/3+\varepsilon)$	×
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_K}(1/3)$	×
[BS16]	arbitrary degree <i>n</i>	quantum poly	✓

(all algorithms assume ERH)

[[]BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Notation: $L_x(\alpha) = \exp\left(O(\log(x)^{\alpha} \cdot \log\log(x)^{1-\alpha})\right)$, K degree n and discriminant Δ_K ρ_K residue of the zeta function of K at 1

	Number fields	Complexity	Non heuristic
[HM89]	quadratic imaginary	$L_{\Delta_K}(1/2)$	✓
[Buc88]	fixed degree <i>n</i>	$L_{\Delta_K}(1/2)$	X
[BF14]	arbitrary degree <i>n</i>	$L_{\Delta_{\mathcal{K}}}(2/3+\varepsilon)$	X
[BF14,Gel17] [BEF+17]	specific defining polynomial	as small as $L_{\Delta_K}(1/3)$	X
[BS16]	arbitrary degree <i>n</i>	quantum poly	✓
This work	arbitrary degree <i>n</i>	$\rho_{\mathcal{K}}(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^n}(2/3))$	✓

(all algorithms assume ERH)

[[]BS16] Biasse, Song. A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Outline of the talk

- Some definitions
- 2 Heuristic algorithms
- Removing the first heuristic
- 4 Removing the second heuristic

Number field:
$$K = \mathbb{Q}[X]/(X^n + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ $(n = 2^k)$ (or K any number field)

Number field:
$$K = \mathbb{Q}[X]/(X^n + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ $(n = 2^k)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_K$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_K$

- x + y ∈ I
- $\quad \quad \alpha \cdot x \in I$

Number field:
$$K = \mathbb{Q}[X]/(X^n + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ $(n = 2^k)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_K$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_K$

- x + y ∈ I
- $\alpha \cdot x \in I$

e.g., $x \cdot \mathcal{O}_K := \{x \cdot y \mid y \in \mathcal{O}_K\}$ is a principal ideal

Number field:
$$K = \mathbb{Q}[X]/(X^n + 1)$$
 and $\mathcal{O}_K = \mathbb{Z}[X]/(X^n + 1)$ $(n = 2^k)$ (or K any number field)

Ideals: $I \subseteq \mathcal{O}_K$ s.t. for all $x, y \in I$ and $\alpha \in \mathcal{O}_K$

- $x + y \in I$
- $\alpha \cdot x \in I$

e.g.,
$$x \cdot \mathcal{O}_K := \{x \cdot y \mid y \in \mathcal{O}_K\}$$
 is a principal ideal

$$\begin{array}{cccc} \mathcal{O}_{K} & \leftrightarrow & \mathbb{Z} \\ I \subseteq \mathcal{O}_{K} & \leftrightarrow & x \in \mathbb{Z} \text{ or } x \cdot \mathbb{Z} \\ I := \mathcal{O}_{K} & \leftrightarrow & 1 \text{ or } \mathbb{Z} \end{array}$$

Properties of ideals

Arithmetic properties:

- lacksquare Multiplication / Inverse: $I\cdot J$, $I\cdot I^{-1}=\mathcal{O}_{\mathcal{K}}$
- ▶ Divisibility: $x \in I \Leftrightarrow x \cdot \mathcal{O}_K = I \cdot J$ $(6 \in 2 \cdot \mathbb{Z}, 6 = 2 \cdot 3)$
- Unique factorization: $I = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}} \quad (n_{\mathfrak{p}} \geq 0)$
- ▶ Size: $\mathcal{N}(I)$ ($\leftrightarrow |\mathbb{Z}/x\mathbb{Z}| = |x| \text{ for } x \in \mathbb{Z}$)
- lacksquare B-smooth: $I=\prod_{\mathcal{N}(\mathfrak{p})\leq B}\mathfrak{p}^{n_{\mathfrak{p}}}$

Properties of ideals

Arithmetic properties:

- ▶ Multiplication / Inverse: $I \cdot J$, $I \cdot I^{-1} = \mathcal{O}_K$
- ▶ Divisibility: $x \in I \Leftrightarrow x \cdot \mathcal{O}_K = I \cdot J$ $(6 \in 2 \cdot \mathbb{Z}, 6 = 2 \cdot 3)$
- Unique factorization: $I = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}} \quad (n_{\mathfrak{p}} \geq 0)$
- ▶ Size: $\mathcal{N}(I)$ ($\leftrightarrow |\mathbb{Z}/x\mathbb{Z}| = |x| \text{ for } x \in \mathbb{Z}$)
- ightharpoonup B-smooth: $I = \prod_{\mathcal{N}(\mathfrak{p}) \leq B} \mathfrak{p}^{n_{\mathfrak{p}}}$

Geometric properties:

- ▶ Embedding: $\sigma: K \to \mathbb{C}^n$
 - $x \mapsto (\sigma_1(x), \cdots, \sigma_n(x))$ $(\sigma_i$'s are field morphisms)
- ▶ Lattices: $\sigma(I) \subset \mathbb{C}^n$ is a lattice (of rank n)
- ► Size: $||x|| := ||\sigma(x)||_2$ $(x \in \mathcal{O}_K)$

S-units

Notations:

- ullet ${\cal S}$ is a finite set of prime ideals of ${\cal O}_K$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding $(\text{Log}(x) = (\log |\sigma_1(x)|, \cdots, \log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

S-units

Notations:

- ullet ${\cal S}$ is a finite set of prime ideals of ${\cal O}_{\cal K}$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding $(\text{Log}(x) = (\log |\sigma_1(x)|, \cdots, \log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

Definition

The Log-S-unit lattice is

$$\Lambda_{\mathcal{S}} := \left\{ \left(\mathsf{Log}(\mathsf{x}), (-n_{\mathfrak{p}})_{\mathfrak{p} \in \mathcal{S}} \right) \, \middle| \, \mathsf{x} \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}} \right\} \subset \mathbb{R}^{n} \times \mathbb{Z}^{|\mathcal{S}|}$$

(e.g.,
$$S = \{2, 3, 5\}, x = 6, 6 = 2^1 \cdot 3^1 \cdot 5^0 \Rightarrow (\log(6), -1, -1, 0) \in \Lambda_S$$
)

S-units

Notations:

- ullet ${\cal S}$ is a finite set of prime ideals of ${\cal O}_{\cal K}$
- Log : $K \to \mathbb{R}^n$ is the logarithmic embedding $(\text{Log}(x) = (\log |\sigma_1(x)|, \cdots, \log |\sigma_n(x)|)$, with σ_i the complex embeddings of K)

Definition

The Log-S-unit lattice is

$$\Lambda_{\mathcal{S}} := \left\{ \left(\mathsf{Log}(\mathsf{x}), (-n_{\mathfrak{p}})_{\mathfrak{p} \in \mathcal{S}} \right) \, \middle| \, \mathsf{x} \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}} \right\} \subset \mathbb{R}^{n} \times \mathbb{Z}^{|\mathcal{S}|}$$

(e.g.,
$$S = \{2, 3, 5\}, x = 6, 6 = 2^1 \cdot 3^1 \cdot 5^0 \Rightarrow (\log(6), -1, -1, 0) \in \Lambda_S$$
)

Computing \mathcal{S} -units = computing a basis of $\Lambda_{\mathcal{S}}$ (or a generating set)

Theorem and applications

Theorem

Assuming ERH, there is a Monte Carlo algorithm which computes Λ_S in expected time polynomial in its input length, in ρ_K , in $L_{\Delta_K}(1/2)$ and in $L_{n^n}(2/3)$.

Reminder: ρ_K is the residue at 1 of ζ_K

Theorem and applications

Theorem

Assuming ERH, there is a Monte Carlo algorithm which computes Λ_S in expected time polynomial in its input length, in ρ_K , in $L_{\Delta_K}(1/2)$ and in $L_{n^n}(2/3)$.

Reminder: ρ_K is the residue at 1 of ζ_K

Applications: we can also compute

- unit group $(S = \emptyset)$
- class-group (S generates Cl_K)
- generators of principal ideals
- class-group discrete logarithms

Outline of the talk

- Some definitions
- Meuristic algorithms
- Removing the first heuristic
- Removing the second heuristic

Definition:
$$S = \{ \text{prime } \mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B \}$$
 (for some B to be determined)

Algorithm SampleVector

- 1: repeat
- 2: Sample random $x \in \mathcal{O}_K$
- 3: **until** $x\mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 4: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Definition:
$$S = \{ \text{prime } \mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B \}$$
 (for some B to be determined)

Algorithm SampleVector

- 1: repeat
- 2: Sample random $x \in \mathcal{O}_K$
- 3: **until** $x\mathcal{O}_K = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 4: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Correctness: ✓

Definition:
$$\mathcal{S} = \{ \text{prime } \mathfrak{p} \mid \mathcal{N}(\mathfrak{p}) \leq B \}$$
 (for some B to be determined)

Algorithm SampleVector

- 1: repeat
- 2: Sample random $x \in \mathcal{O}_K$
- 3: **until** $x\mathcal{O}_{\mathcal{K}}=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 4: return $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Correctness: ✓

Complexity:
$$O(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|)$$

- $ightharpoonup T_{\text{sample}}$: time to sample x
- $ightharpoonup p_{smooth}$: probability that $x\mathcal{O}_K$ is smooth
- |S| = O(B): time to test smoothness

Definition:
$$\mathcal{S} = \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$$
 (for some B to be determined)

Algorithm SampleVector

- 1: repeat
- 2: Sample random $x \in \mathcal{O}_K$
- 3: **until** $x\mathcal{O}_K = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 4: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Correctness: ✓

Complexity:
$$O(T_{\text{sample}} \cdot p_{\text{smooth}}^{-1} \cdot |S|)$$

- $ightharpoonup T_{\text{sample}}$: time to sample x
- \triangleright p_{smooth} : probability that $x\mathcal{O}_K$ is smooth
- |S| = O(B): time to test smoothness

Buchmann:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- x = Shortest_Vector(I)

$$(x \in I \Rightarrow x\mathcal{O}_K = I \cdot J)$$

Buchmann:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- x = Shortest_Vector(I)

$$(x \in I \Rightarrow x\mathcal{O}_K = I \cdot J)$$

 $x\mathcal{O}_K$ smooth $\Leftrightarrow xI^{-1}$ smooth $(\Rightarrow$ the smaller $\mathcal{N}(xI^{-1})$, the better)

Buchmann:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- \times x = Shortest_Vector(I)

$$(x \in I \Rightarrow x\mathcal{O}_K = I \cdot J)$$

 $x\mathcal{O}_K$ smooth $\Leftrightarrow xI^{-1}$ smooth $(\Rightarrow$ the smaller $\mathcal{N}(xI^{-1})$, the better)

Complexity: $2^{O(n)}$ (for Shortest_Vector(1))

Buchmann:

- ullet sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- \times x = Shortest_Vector(I)

$$(x \in I \Rightarrow x\mathcal{O}_K = I \cdot J)$$

 $x\mathcal{O}_{\mathcal{K}}$ smooth $\Leftrightarrow xI^{-1}$ smooth $(\Rightarrow$ the smaller $\mathcal{N}(xI^{-1})$, the better)

Complexity: $2^{O(n)}$ (for Shortest_Vector(I))

Subexponential only for fixed n

How to sample x? – Biasse-Fieker

Biasse-Fieker:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$

How to sample x? – Biasse-Fieker

Biasse-Fieker:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

How to sample x? – Biasse-Fieker

Biasse-Fieker:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

Shortness: $\|x\|_{\infty} \leq n^{n/\beta} \cdot \Delta_{K}^{1/(2n)} \cdot \mathcal{N}(I)^{1/n}$

How to sample x? – Biasse-Fieker

Biasse-Fieker:

- lacksquare sample random ideal $I=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{m_{\mathfrak{p}}}$
- $x = BKZ_{\beta}(I)$ (blocksize β)

Complexity: $2^{O(\beta)}$ (can be subexponential)

Shortness: $\|x\|_{\infty} \leq n^{n/\beta} \cdot \Delta_{K}^{1/(2n)} \cdot \mathcal{N}(I)^{1/n}$

$$\Rightarrow \mathcal{N}(xI^{-1}) \leq n^{n^2/\beta} \cdot \sqrt{\Delta_K}$$

Intermediate summary

$$S := \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$$

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow \text{BKZ}_{\beta}(I)$
- 4: **until** $xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}} \in \mathbb{Z}$
- 5: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}} m_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Intermediate summary

$$S := \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$$

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow \text{BKZ}_{\beta}(I)$
- 4: $\mathsf{until}\ xI^{-1} = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}} \ \mathsf{for some}\ n_{\mathfrak{p}} \in \mathbb{Z}$
- 5: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}} m_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Complexity:

$$O\left(T_{\mathsf{sample}} \cdot p_{\mathsf{smooth}}^{-1} \cdot |\mathcal{S}|\right) = 2^{O(\beta)} \cdot B \cdot p_{\mathsf{smooth}}^{-1}$$

Intermediate summary

$$S := \{ \text{prime } \mathfrak{p} \, | \, \mathcal{N}(\mathfrak{p}) \leq B \}$$

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow BKZ_{\beta}(I)$
- 4: until $xI^{-1}=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 5: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}} m_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Complexity:

$$O\left(T_{\mathsf{sample}} \cdot p_{\mathsf{smooth}}^{-1} \cdot |\mathcal{S}|\right) = 2^{O(\beta)} \cdot B \cdot p_{\mathsf{smooth}}^{-1}$$

Notation: $p_{y,B} = \text{proba that a uniformly random ideal of norm} \leq y$ is B-smooth

Notation: $p_{y,B} = \text{proba that a uniformly random ideal of norm} \leq y$ is B-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

Notation: $p_{y,B} = \text{proba that a uniformly random ideal of norm} \leq y$ is B-smooth

Asymptotically: $p_{y,B} \sim
ho(u) pprox u^{-u}$ (ho Dickman function, $u = \log y/\log B$)

 \bigwedge K fixed and B, u tending to infinity

Notation: $p_{y,B} = \text{proba that a uniformly random ideal of norm} \leq y$ is B-smooth

Asymptotically: $p_{y,B} \sim \rho(u) \approx u^{-u}$ (ρ Dickman function, $u = \log y / \log B$)

 \bigwedge K fixed and B, u tending to infinity

Heuristic: $p_{\sf smooth} pprox u^{-u}$ where $u = \frac{\log \mathcal{N}(imes l^{-1})}{\log B}$

Notation: $p_{y,B} = \text{proba that a uniformly random ideal of norm} \leq y$ is B-smooth

Asymptotically:
$$p_{y,B} \sim \rho(u) \approx u^{-u}$$
 (ρ Dickman function, $u = \log y / \log B$)

 \wedge K fixed and B, u tending to infinity

Heuristic:
$$p_{\mathsf{smooth}} pprox u^{-u}$$
 where $u = \frac{\log \mathcal{N}(\varkappa I^{-1})}{\log B}$

2 assumptions hidden:

- the provable asymptotic bounds require huge B to be effective (roughly $B \gtrsim 2^{2^n}$)
- xI^{-1} is not a random ideal of bounded norm

Sampling one vector – summary

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow \text{BKZ}_{\beta}(I)$
- 4: until x $I^{-1}=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 5: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}} m_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Complexity (heuristic):

$$2^{O(eta)} \cdot B \cdot u^u$$
 with $u = \frac{\log \mathcal{N}(x^{l-1})}{\log B} \le \frac{n^2 \log n/\beta + \log |\Delta_K|/2}{\log B}$

Sampling one vector – summary

Algorithm SampleVector

- 1: repeat
- 2: Sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 3: $x \leftarrow \text{BKZ}_{\beta}(I)$
- 4: until x $I^{-1}=\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$ for some $n_{\mathfrak{p}}\in\mathbb{Z}$
- 5: **return** $\left(\operatorname{Log}(x), (-n_{\mathfrak{p}} m_{\mathfrak{p}})_{\mathfrak{p}} \right)$

Complexity (heuristic):

$$2^{O(eta)} \cdot B \cdot u^u$$
 with $u = \frac{\log \mathcal{N}(x^{J-1})}{\log B} \le \frac{n^2 \log n/\beta + \log |\Delta_K|/2}{\log B}$

- Instantiating:
- $\beta = n^{2/3}$
 - $B = L_{\Delta_K}(1/2) + L_{n^n}(2/3)$

Total complexity: $L_{\Delta_K}(1/2) + L_{n^n}(2/3)$

Computing the full lattice Λ_S

Remark: One can efficiently approximate $\det(\Lambda_{\mathcal{S}}) = \operatorname{Reg}_{\mathcal{K}} \cdot h_{\mathcal{K}}$ (\mathcal{S} generates the class-group)

Remark: One can efficiently approximate $\det(\Lambda_{\mathcal{S}}) = \operatorname{Reg}_{\mathcal{K}} \cdot h_{\mathcal{K}}$ (\mathcal{S} generates the class-group)

Algorithm ComputeSUnits

- 1: repeat
- 2: $z_i \leftarrow \text{SampleVector}()$
- 3: **until** $\mathcal{L}((\mathbf{z}_i)_i)$ is a lattice with the desired rank and det
- 4: Compute a basis **B** of $\mathcal{L}((z_i)_i)$ (linear algebra)
- 5: return B

```
Remark: One can efficiently approximate \det(\Lambda_{\mathcal{S}}) = \operatorname{Reg}_{\mathcal{K}} \cdot h_{\mathcal{K}} (\mathcal{S} generates the class-group)
```

Algorithm ComputeSUnits

```
1: repeat
```

- 2: $z_i \leftarrow \text{SampleVector}()$
- 3: **until** $\mathcal{L}((\mathbf{z}_i)_i)$ is a lattice with the desired rank and det
- 4: Compute a basis **B** of $\mathcal{L}((z_i)_i)$ (linear algebra)
- 5: **return** *B*

Correctness: ✓

Remark: One can efficiently approximate $\det(\Lambda_{\mathcal{S}}) = \operatorname{Reg}_{\mathcal{K}} \cdot h_{\mathcal{K}}$ (\mathcal{S} generates the class-group)

Algorithm ComputeSUnits

- 1: repeat
- 2: $\mathbf{z}_i \leftarrow \text{SampleVector}()$
- 3: **until** $\mathcal{L}((z_i)_i)$ is a lattice with the desired rank and det
- 4: Compute a basis **B** of $\mathcal{L}((z_i)_i)$ (linear algebra)
- 5: return **B**

Correctness: ✓

Heuristic: O(B) vectors from SampleVector() generate Λ_S with good probability $(\operatorname{rk}(\Lambda_S) = O(B))$

Remark: One can efficiently approximate $\det(\Lambda_{\mathcal{S}}) = \operatorname{Reg}_{\mathcal{K}} \cdot h_{\mathcal{K}}$ (\mathcal{S} generates the class-group)

Algorithm ComputeSUnits

- 1: repeat
- 2: $z_i \leftarrow \text{SampleVector}()$
- 3: **until** $\mathcal{L}((\mathbf{z}_i)_i)$ is a lattice with the desired rank and det
- 4: Compute a basis **B** of $\mathcal{L}((z_i)_i)$ (linear algebra)
- 5: return B

Correctness: ✓

Heuristic: O(B) vectors from SampleVector() generate Λ_S with good probability $(\operatorname{rk}(\Lambda_S) = O(B))$

Complexity:
$$poly(B) = L_{\Delta_K}(1/2) + L_{n^n}(2/3)$$

Heuristics – summary

Heuristic 1:
$$p_{\mathsf{smooth}} pprox u^{-u}$$
 where $u = \frac{\log \mathcal{N}(\mathsf{x}I^{-1})}{\log B}$

- 1.1. the asymptotic bounds hold even for smallish B's
- 1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristics – summary

Heuristic 1:
$$p_{\mathsf{smooth}} pprox u^{-u}$$
 where $u = \frac{\log \mathcal{N}(\mathsf{x} l^{-1})}{\log \mathcal{B}}$

- 1.1. the asymptotic bounds hold even for smallish B's
- 1.2. xI^{-1} behaves like a uniform ideal of bounded norm

Heuristic 2: O(B) vectors from SampleVector() generate $\Lambda_{\mathcal{S}}$ with good probability

Outline of the talk

- Some definitions
- 2 Heuristic algorithms
- Removing the first heuristic
- 4 Removing the second heuristic

Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal

- 1: sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 2: $\mathbf{B} \leftarrow BKZ_{\beta}(I)$ (B reduced basis of I)
- 3: sample random $x \in I$ (using small basis B)
- 4: return (x, I)

Provable sampling in ideals [BDPW22]

Algorithm SampleInIdeal

- 1: sample random $I = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{m_{\mathfrak{p}}}$
- 2: $\mathbf{B} \leftarrow BKZ_{\beta}(I)$ (B reduced basis of I)
- 3: sample random $x \in I$ (using small basis B)
- 4: return (x, I)

Theorem (ERH) [BDPW22]

For any infinite set ${\mathcal T}$ of ideals, it holds that

$$\Pr_{(x,I) \leftarrow \texttt{SampleInIdeal}} \left(x I^{-1} \in \mathcal{T} \right) \geq \frac{\delta_{\mathcal{T}}[n^{n^2/\beta} \cdot \sqrt{\Delta_K}]}{3}.$$

[BDPW22] de Boer, Ducas, Pellet-Mary, Wesolowski. Sampling ideals in a class: smooth, near-prime or otherwise.

Heuristic 1.2: xI^{-1} behaves like a uniform ideal of bounded norm

Can be proven using previous slide up to

- changing slightly the sampling procedure
- decreasing by 3 the success probability

Heuristic 1.1: $\delta_{\mathcal{S}}[y] \approx u^{-u}$ even for small B's $(u = \log y / \log B)$

Heuristic 1.1:
$$\delta_{\mathcal{S}}[y] \approx u^{-u}$$
 even for small B's $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any
$$B \geq \Omega((n + \log \Delta_K)^3)$$
,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_K^{-1}.$$

Heuristic 1.1:
$$\delta_{\mathcal{S}}[y] \approx u^{-u}$$
 even for small B's $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any
$$B \geq \Omega((n + \log \Delta_K)^3)$$
,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_K^{-1}.$$

Discussion:

• for cyclotomic fields, $\rho_K = \text{poly}(n)$

Heuristic 1.1:
$$\delta_{\mathcal{S}}[y] \approx u^{-u}$$
 even for small B 's $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any
$$B \geq \Omega((n + \log \Delta_K)^3)$$
,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_K^{-1}.$$

Discussion:

- for cyclotomic fields, $\rho_K = \text{poly}(n)$
- there exist fields where $\rho_K = \exp(n)$

Heuristic 1.1:
$$\delta_{\mathcal{S}}[y] \approx u^{-u}$$
 even for small B's $(u = \log y / \log B)$

▶ We could not prove it, but we proved

Lemma

For any
$$B \geq \Omega((n + \log \Delta_K)^3)$$
,

$$\delta_{\mathcal{S}}[y] \gtrsim u^{-u} \cdot \rho_K^{-1}.$$

Discussion:

- for cyclotomic fields, $\rho_K = \text{poly}(n)$
- there exist fields where $\rho_K = \exp(n)$
- is the bound tight?
 - ▶ If yes, this impacts also the heuristic algorithm

Heuristic 1 – summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure (same asymptotic complexity)
- ullet dividing $p_{
 m smooth}$ by ho_K

Heuristic 1 – summary

One can prove heuristic 1 up to

- changing slightly the sampling procedure (same asymptotic complexity)
- dividing p_{smooth} by ρ_K

Theorem (ERH)

There is an algorithm SampleVector that computes $oldsymbol{
u}\in \Lambda_{\mathcal{S}}$ in time

$$\rho_{K}\cdot\Big(L_{\Delta_{K}}(1/2)+L_{n^{n}}(2/3)\Big).$$

Outline of the talk

- Some definitions
- 2 Heuristic algorithms
- Removing the first heuristic
- 4 Removing the second heuristic

Reminder

There is an algorithm SampleVector that

- computes $\mathbf{v} \in \Lambda_{\mathcal{S}}$
- in time

$$\rho_{\mathcal{K}} \cdot \Big(L_{\Delta_{\mathcal{K}}}(1/2) + L_{n^n}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

- computes $x \in K$ and $(n_{\mathfrak{p}})_{\mathfrak{p}} \in \mathbb{Z}^{|\mathcal{S}|}$ such that $x\mathcal{O}_K = \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}}$
- in time

$$\rho_{\mathcal{K}} \cdot \Big(L_{\Delta_{\mathcal{K}}}(1/2) + L_{n^n}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

- takes as input an ideal I
- ullet computes $x\in K$ and $(n_{\mathfrak{p}})_{\mathfrak{p}}\in \mathbb{Z}^{|\mathcal{S}|}$ such that $x\mathcal{O}_K=I\cdot\prod_{\mathfrak{p}\in\mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$
- in time

$$\rho_{\mathcal{K}}\cdot\Big(L_{\Delta_{\mathcal{K}}}(1/2)+L_{n^n}(2/3)\Big).$$

Reminder

There is an algorithm SampleVector that

- takes as input an ideal /
- ullet computes $x\in K$ and $(n_{\mathfrak{p}})_{\mathfrak{p}}\in \mathbb{Z}^{|\mathcal{S}|}$ such that $x\mathcal{O}_K=I\cdot \prod_{\mathfrak{p}\in \mathcal{S}}\mathfrak{p}^{n_{\mathfrak{p}}}$
- in time

$$\rho_{\mathcal{K}} \cdot \Big(L_{\Delta_{\mathcal{K}}}(1/2) + L_{n^n}(2/3)\Big).$$

From now on, we use SampleVector in a black-box way

Heuristic 2 – main idea

Algorithm RandomVector

4: return w - v

```
1: sample random \mathbf{v} := \left( \operatorname{Log} x, \left( -n_{\mathfrak{p}} \right) \right) \quad (x \mathcal{O}_{K} \neq \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}})
2: define I := x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}
3: \mathbf{w} := \left( \operatorname{Log} y, \left( -m_{\mathfrak{p}} \right)_{\mathfrak{p}} \right) \leftarrow \operatorname{SampleVector}(\mathbf{I}) \quad (y \mathcal{O}_{K} = I \cdot \prod \mathfrak{p}^{m_{\mathfrak{p}}})
```

Heuristic 2 – main idea

Algorithm RandomVector

```
1: sample random \mathbf{v} := \left( \operatorname{Log} x, (-n_{\mathfrak{p}}) \right) \quad (x \mathcal{O}_{\kappa} \neq \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}})
2: define I := x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}
3: \mathbf{w} := \left( \operatorname{Log} y, (-m_{\mathfrak{p}})_{\mathfrak{p}} \right) \leftarrow \operatorname{SampleVector}(\mathbf{I}) \quad (y \mathcal{O}_{\kappa} = I \cdot \prod \mathfrak{p}^{m_{\mathfrak{p}}})
4: return \mathbf{w} = \mathbf{v}
```

Correctness:
$$yx^{-1} \cdot \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}} - n_{\mathfrak{p}}} \quad \Rightarrow \quad \mathbf{w} - \mathbf{v} \in \Lambda_{\mathcal{S}}$$

Heuristic 2 – main idea

Algorithm RandomVector

```
1: sample random \mathbf{v} := \left( \log x, (-n_{\mathfrak{p}}) \right) \quad (x \mathcal{O}_{K} \neq \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{n_{\mathfrak{p}}})
2: define I := x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}}
3: \mathbf{w} := \left( \log y, (-m_{\mathfrak{p}})_{\mathfrak{p}} \right) \leftarrow \text{SampleVector}(\mathbf{I}) \quad (y \mathcal{O}_{K} = I \cdot \prod \mathfrak{p}^{m_{\mathfrak{p}}})
4: return \mathbf{w} - \mathbf{v}
```

Correctness:
$$yx^{-1} \cdot \mathcal{O}_{\mathcal{K}} = \prod_{\mathfrak{p}} \mathfrak{p}^{m_{\mathfrak{p}} - n_{\mathfrak{p}}} \quad \Rightarrow \quad \mathbf{w} - \mathbf{v} \in \Lambda_{\mathcal{S}}$$

Intuition: $\mathbf{w} - \mathbf{v}$ is random in $\Lambda_{\mathcal{S}}$ (and independent from other vectors obtained so far) because SampleVector cannot guess \mathbf{v} from \mathbf{I} .

- Reminder: $\mathbf{v} = (\operatorname{Log} x, (-n_{\mathfrak{p}})_{\mathfrak{p}})$

 - $\mathbf{w} = \text{SampleVector}(\mathbf{I}) \quad (\Rightarrow \mathbf{w} \mathbf{v} \in \Lambda_{\mathcal{S}})$

```
Reminder: \mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = I = x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}
\mathbf{v} = Sample Vector(I) \qquad (\Rightarrow \mathbf{w} - \mathbf{v} \in \Lambda_{\mathcal{S}})
```

Claim: \mathbf{w} only depends on \mathbf{v} mod Λ_S and $\mathbf{w} - \mathbf{v} \in \Lambda_S$

```
Reminder: \mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = I = x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}
\mathbf{v} = Sample Vector(I) \qquad (\Rightarrow \mathbf{w} - \mathbf{v} \in \Lambda_{\mathcal{S}})
```

Claim: \mathbf{w} only depends on \mathbf{v} mod Λ_S and $\mathbf{w} - \mathbf{v} \in \Lambda_S$

Proof:
$$x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} = x' \prod_{\mathfrak{p}} \mathfrak{p}^{-n'_{\mathfrak{p}}} \iff \mathbf{v} = \mathbf{v}' \mod \Lambda_{\mathcal{S}}$$

```
Reminder: \mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = \left( \log x, (-n_{\mathfrak{p}})_{\mathfrak{p}} \right)
\mathbf{v} = I = x \cdot \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}}
\mathbf{v} = Sample Vector(I) \qquad (\Rightarrow \mathbf{w} - \mathbf{v} \in \Lambda_{\mathcal{S}})
```

Claim: \mathbf{w} only depends on \mathbf{v} mod Λ_S and $\mathbf{w} - \mathbf{v} \in \Lambda_S$

Proof:
$$x \prod_{\mathfrak{p}} \mathfrak{p}^{-n_{\mathfrak{p}}} = x' \prod_{\mathfrak{p}} \mathfrak{p}^{-n'_{\mathfrak{p}}} \iff \mathbf{v} = \mathbf{v}' \mod \Lambda_{\mathcal{S}}$$

 $\Rightarrow I$ only depends on $\mathbf{v} + \Lambda_{\mathcal{S}}$
 $\Rightarrow \mathbf{w}$ only depends on $\mathbf{v} + \Lambda_{\mathcal{S}}$
(provided we have a canonical representation for I)

$${m w} = f({m v} + {m \Lambda}_{\mathcal S})$$
 and ${m w} - {m v} \in {m \Lambda}_{\mathcal S}$ (f might be randomized)

$${m w} = f({m v} + {m \Lambda}_{\mathcal S})$$
 and ${m w} - {m v} \in {m \Lambda}_{\mathcal S}$ (f might be randomized)

Consequence: $(D_{\Lambda,\sigma}$ centered discrete gaussian distribution over Λ , deviation σ)

$${m w} = f({m v} + {m \Lambda}_{\mathcal S})$$
 and ${m w} - {m v} \in {m \Lambda}_{\mathcal S}$ (f might be randomized)

Consequence: $(D_{\Lambda,\sigma}$ centered discrete gaussian distribution over Λ , deviation σ)

return
$$z := v - w$$
return $z := v - w$

$$\mathbf{v} - \mathbf{w} \sim D_{\Lambda_S, \sigma, \mathbf{c}}$$
 (for some random center $\mathbf{c} = -\mathbf{w}$)

$${m w} = f({m v} + {m \Lambda}_{\mathcal S})$$
 and ${m w} - {m v} \in {m \Lambda}_{\mathcal S}$ (f might be randomized)

Consequence: $(D_{\Lambda,\sigma}$ centered discrete gaussian distribution over Λ , deviation $\sigma)$

$$\mathbf{v} - \mathbf{w} \sim D_{\Lambda_{\mathcal{S}}, \sigma, \mathbf{c}}$$
 (for some random center $\mathbf{c} = -\mathbf{w}$)

Lemma: O(B) samples from $D_{\Lambda_S,\sigma,m{c}}$ generate Λ_S with high probability

Heuristic 2 – summary

Algorithm ComputeSUnits

```
1: for O(B) loops do

2: sample \mathbf{v} := (\operatorname{Log}(x), (-n_{\mathfrak{p}})) \leftarrow D_{\sigma}

3: \mathbf{w} \leftarrow \operatorname{SampleVector}(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}})

4: \mathbf{z}_i := \mathbf{v} - \mathbf{w}

5: end for

6: return (\mathbf{z}_i)_i
```

Heuristic 2 – summary

Algorithm ComputeSUnits

```
1: for O(B) loops do

2: sample \mathbf{v} := (\operatorname{Log}(x), (-n_{\mathfrak{p}})) \leftarrow D_{\sigma}

3: \mathbf{w} \leftarrow \operatorname{SampleVector}(x \cdot \prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{-n_{\mathfrak{p}}})

4: \mathbf{z}_i := \mathbf{v} - \mathbf{w}

5: end for

6: return (\mathbf{z}_i)_i
```

Theorem (ERH)

If SampleVector is correct, then ComputeSUnits computes a generating set of Λ_S with high probability in time $T(\text{SampleVector}) \cdot \text{poly}(B)$.

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- ullet the run time is increased by a factor ho_K

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- ullet the run time is increased by a factor ho_K

```
Open question 1: is \delta_{\mathcal{S}}[y] \approx u^{-u} or \delta_{\mathcal{S}}[y] \approx \rho_{\mathcal{K}}^{-1} \cdot u^{-u} ? (Reminder: \delta_{\mathcal{S}}[y] = \text{density of } B\text{-smooth ideals of norm } \leq y)
```

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- ullet the run time is increased by a factor ho_K

```
Open question 1: is \delta_{\mathcal{S}}[y] \approx u^{-u} or \delta_{\mathcal{S}}[y] \approx \rho_{\mathcal{K}}^{-1} \cdot u^{-u} ? (Reminder: \delta_{\mathcal{S}}[y] = \text{density of } B\text{-smooth ideals of norm } \leq y)
```

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Open question 2: Las Vegas algorithm instead of Monte Carlo? (check the precision needed for the linear algebra step)

Summary:

- remove both heuristics of Biasse-Fieker algorithm (under ERH)
- algorithm is slightly modified
- ullet the run time is increased by a factor ho_K

```
Open question 1: is \delta_{\mathcal{S}}[y] \approx u^{-u} or \delta_{\mathcal{S}}[y] \approx \rho_{\mathcal{K}}^{-1} \cdot u^{-u} ? (Reminder: \delta_{\mathcal{S}}[y] = \text{density of } B\text{-smooth ideals of norm } \leq y)
```

- can we improve our runtime?
- or are the runtime of the heuristic algorithms too optimistic?

Open question 2: Las Vegas algorithm instead of Monte Carlo? (check the precision needed for the linear algebra step)

Questions?