
Cryptanalysis of branching program obfuscators

Jung Hee Cheon1, Minki Hhan1, Jiseung Kim1, Changmin Lee1, Alice
Pellet-Mary2

1 Seoul National University

2 ENS de Lyon

Crypto 2018

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 1/23

What is this talk about

Two partial attacks against some candidate obfuscators built upon the
GGH13 multilinear map [GGH13a]

an attack for specific choices of parameters

a quantum attack

Main idea of the two attacks

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 2/23

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 3/23

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 3/23

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C (impossible, [BGI+01])

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 3/23

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C (impossible, [BGI+01])

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 3/23

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C (impossible, [BGI+01])

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 3/23

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps
(mmap).

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weaknesses of GGH13 to mount concrete
attacks against some iO using it.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 4/23

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps
(mmap).

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weaknesses of GGH13 to mount concrete
attacks against some iO using it.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 4/23

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps
(mmap).

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weaknesses of GGH13 to mount concrete
attacks against some iO using it.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 4/23

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], first candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b] (in input-partitionable case)

2017: [FRS17], prevent [CGH17] attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 5/23

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], first candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b] (in input-partitionable case)

2017: [FRS17], prevent [CGH17] attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 5/23

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], first candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b] (in input-partitionable case)

2017: [FRS17], prevent [CGH17] attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 5/23

State of the art and contributions

This work 2‡

[Pel18]

This work 1†

[CHKL18]

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators Circuit
obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

XXX

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for specific choices of parameters

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 6/23

Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 7/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7

= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7
= 0→ 0
6= 0→ 1

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 8/23

Cryptographic multilinear maps

Definition: κ-multilinear map

Different levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True iff a = 0.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 9/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−1
4Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A00

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−1
4Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−1
4

Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−1
4Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,0

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

Ã2,0

Ã2,0

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−1
4Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,0

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc()

Enc()

Ã2,0

Ã2,0

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−1
4

Enc()

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23

Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 11/23

The GGH13 multilinear map

Define R = Z[X]/(X n + 1) with n = 2k .

The plaintext space is P = R/〈g〉
for a “small” element g in R.

The encoding space is Rq = R/(qR) = Zq[X]/(X n + 1)
for a “large” integer q.

Notation

We write [x]q the elements in Rq for x ∈ R.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 12/23

The GGH13 multilinear map

Define R = Z[X]/(X n + 1) with n = 2k .

The plaintext space is P = R/〈g〉
for a “small” element g in R.

The encoding space is Rq = R/(qR) = Zq[X]/(X n + 1)
for a “large” integer q.

Notation

We write [x]q the elements in Rq for x ∈ R.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 12/23

The GGH13 multilinear map

Define R = Z[X]/(X n + 1) with n = 2k .

The plaintext space is P = R/〈g〉
for a “small” element g in R.

The encoding space is Rq = R/(qR) = Zq[X]/(X n + 1)
for a “large” integer q.

Notation

We write [x]q the elements in Rq for x ∈ R.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 12/23

The GGH13 multilinear map: encodings and zero-test

Sample z uniformly in Rq and h in R of the order of q1/2.

Encoding: An encoding of a at level i is

u = [(a + rg)z−i]q

where a + rg is a small element in a + 〈g〉.

Zero-testing: A zero-testing parameter is defined by

pzt = [zκhg−1]q.

Zero-test

To test if u = [cz−κ]q is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt]q = [chg−1]q.

This is small iff c is a small multiple of g .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 13/23

The GGH13 multilinear map: encodings and zero-test

Sample z uniformly in Rq and h in R of the order of q1/2.

Encoding: An encoding of a at level i is

u = [(a + rg)z−i]q

where a + rg is a small element in a + 〈g〉.
Zero-testing: A zero-testing parameter is defined by

pzt = [zκhg−1]q.

Zero-test

To test if u = [cz−κ]q is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt]q = [chg−1]q.

This is small iff c is a small multiple of g .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 13/23

The GGH13 multilinear map: encodings and zero-test

Sample z uniformly in Rq and h in R of the order of q1/2.

Encoding: An encoding of a at level i is

u = [(a + rg)z−i]q

where a + rg is a small element in a + 〈g〉.
Zero-testing: A zero-testing parameter is defined by

pzt = [zκhg−1]q.

Zero-test

To test if u = [cz−κ]q is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt]q = [chg−1]q.

This is small iff c is a small multiple of g .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 13/23

Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 14/23

Global ideas of the two attacks

Main idea

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators.

Attack 1 [CHKL18]:

NTRU attack [ABD16, CJL16, KF17]
recover multiple of sensitive elements
classical polynomial time, for specific choices of parameters

Attack 2 [Pel18]:

short principal ideal solver [CDPR16]
recover a sensitive element
quantum polynomial time [BS16] (or classical sub-exponential time [BEF+17]
for specific (unused) choices of parameters)

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 15/23

Global ideas of the two attacks

Main idea

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators.

Attack 1 [CHKL18]:

NTRU attack [ABD16, CJL16, KF17]
recover multiple of sensitive elements
classical polynomial time, for specific choices of parameters

Attack 2 [Pel18]:

short principal ideal solver [CDPR16]
recover a sensitive element
quantum polynomial time [BS16] (or classical sub-exponential time [BEF+17]
for specific (unused) choices of parameters)

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 15/23

Global ideas of the two attacks

Main idea

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators.

Attack 1 [CHKL18]:

NTRU attack [ABD16, CJL16, KF17]
recover multiple of sensitive elements
classical polynomial time, for specific choices of parameters

Attack 2 [Pel18]:

short principal ideal solver [CDPR16]
recover a sensitive element
quantum polynomial time [BS16] (or classical sub-exponential time [BEF+17]
for specific (unused) choices of parameters)

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 15/23

Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 16/23

Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 16/23

Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 16/23

Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 16/23

Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 16/23

Attack 1

Input: An obfuscated program O(P) and plain program Q
De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

Enc(Ã0)

Enc(Ã1,0)

Enc(Ã1,1)

Enc(Ã2,0)

Enc(Ã2,1)

Enc(Ã3,0)

Enc(Ã3,1)

Enc(Ã4)

These matrices ∈ R rather that Rq

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q
De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

c0(Ã0 + R0g)

c1,0(Ã1,0 + R1,0g)

c1,1(Ã1,1 + R1,1g)

c2,0(Ã2,0 + R2,0g)

c2,1(Ã2,1 + R2,1g)

c3,0(Ã3,0 + R3,0g)

c3,1(Ã3,1 + R3,1g)

c4(Ã4 + R4g)

These matrices ∈ R rather that Rq

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q
De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

c0(Ã0 + R0g)

c1,0(Ã1,0 + R1,0g)

c1,1(Ã1,1 + R1,1g)

c2,0(Ã2,0 + R2,0g)

c2,1(Ã2,1 + R2,1g)

c3,0(Ã3,0 + R3,0g)

c3,1(Ã3,1 + R3,1g)

c4(Ã4 + R4g)

These matrices ∈ R rather that Rq

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q

De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

These matrices ∈ R rather that Rq

BP matrix Enc(Ã)

Enc(0) [rg/zκ]q

Collecting several top level zeros, recover 〈g〉

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q

De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

These matrices ∈ R rather that Rq

BP matrix Enc(Ã)

Enc(0) [rg/zκ]q

⇒
c(Ã + Rg)

c ′rg

Collecting several top level zeros, recover 〈g〉

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q

De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

These matrices ∈ R rather that Rq

BP matrix Enc(Ã)

Enc(0) [rg/zκ]q

⇒
c(Ã + Rg)

c ′rg

Collecting several top level zeros, recover 〈g〉

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q

De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

These matrices ∈ R rather that Rq

BP matrix Enc(Ã)

Enc(0) [rg/zκ]q

⇒
c(Ã + Rg)

c ′rg

⇒ cÃ mod g

Collecting several top level zeros, recover 〈g〉

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1

Input: An obfuscated program O(P) and plain program Q

De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

These matrices ∈ R rather that Rq

cÃ mod g do not contain the randomness r and level parameter z

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 17/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways

(omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4 6=
B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Matrix Zeroizing Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Matrix-zeroizing attack: extended mixed-input attack

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4 6=
B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 1: Matrix Zeroizing Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Matrix-zeroizing attack: extended mixed-input attack

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

invalid input
010, 011, 100, 101, · · ·

∑ Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4 6=
B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 18/23

Attack 2: Starting point = Principal Ideal Problem

Given an obfuscated branching program, the evaluation of program is
determined, for κ level encoding u, by the value

[upzt]q.

When output of program is 1, u = [rg/zκ]q holds and [upzt]q = rh ∈ R.

Short Principal Ideal Problem [BS16, CDPR16]

Given many multiples of h, we can recover

h ∈ R

in quantum polynomial time.

We can compute the double-zero testing value at level 2κ as follows.

[(pzt/h)2]q = [z2κ · g−2]q

Remark: every computations works correctly.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 19/23

Attack 2: Starting point = Principal Ideal Problem

Given an obfuscated branching program, the evaluation of program is
determined, for κ level encoding u, by the value

[upzt]q.

When output of program is 1, u = [rg/zκ]q holds and [upzt]q = rh ∈ R.

Short Principal Ideal Problem [BS16, CDPR16]

Given many multiples of h, we can recover

h ∈ R

in quantum polynomial time.

We can compute the double-zero testing value at level 2κ as follows.

[(pzt/h)2]q = [z2κ · g−2]q

Remark: every computations works correctly.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 19/23

Attack 2: Starting point = Principal Ideal Problem

Given an obfuscated branching program, the evaluation of program is
determined, for κ level encoding u, by the value

[upzt]q.

When output of program is 1, u = [rg/zκ]q holds and [upzt]q = rh ∈ R.

Short Principal Ideal Problem [BS16, CDPR16]

Given many multiples of h, we can recover

h ∈ R

in quantum polynomial time.

We can compute the double-zero testing value at level 2κ as follows.

[(pzt/h)2]q = [z2κ · g−2]q

Remark: every computations works correctly.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 19/23

Attack 2: Starting point = Principal Ideal Problem

Given an obfuscated branching program, the evaluation of program is
determined, for κ level encoding u, by the value

[upzt]q.

When output of program is 1, u = [rg/zκ]q holds and [upzt]q = rh ∈ R.

Short Principal Ideal Problem [BS16, CDPR16]

Given many multiples of h, we can recover

h ∈ R

in quantum polynomial time.

We can compute the double-zero testing value at level 2κ as follows.

[(pzt/h)2]q = [z2κ · g−2]q

Remark: every computations works correctly.
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 19/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1 ? ? ?

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1 1 0 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions 1

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

invalid input
indices 0 1 1 1 0 1

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

1level parameters, scalar bundlings
M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 20/23

Summary and work in progress

This work 2‡

[Pel18]

This work 1†

[CHKL18]

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators Circuit
obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

XXX

?

XXXX

?

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for specific choices of parameters

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 21/23

Summary and work in progress

This work 2‡

[Pel18]

This work 1†

[CHKL18]

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators Circuit
obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

XXX?

XXXX ?

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for specific choices of parameters

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 21/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!

We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!

We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23

Perspectives / Open problems

Obfuscation for evasive functions

Countermeasure on the attacks

Parameter constraints to prevent our classical attack2: n = Ω̃(κ2λ)

This constraint agrees to the current best algorithms to solve the
overstretched NTRU problem

Remark

Proofs in idealized models VS Constructions with concrete schemes

Concrete schemes do not fit in the idealized model

⇒ This gap can cause the significant weakness of concrete scheme!

2n: dimension of space, κ: multilinearity level, λ: security parameter
To prevent classical PIP attack and our attack: n = Ω̃(max(κ2λ, λ2))

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 23/23

Perspectives / Open problems

Obfuscation for evasive functions

Countermeasure on the attacks

Parameter constraints to prevent our classical attack2: n = Ω̃(κ2λ)

This constraint agrees to the current best algorithms to solve the
overstretched NTRU problem

Remark

Proofs in idealized models VS Constructions with concrete schemes

Concrete schemes do not fit in the idealized model

⇒ This gap can cause the significant weakness of concrete scheme!

2n: dimension of space, κ: multilinearity level, λ: security parameter
To prevent classical PIP attack and our attack: n = Ω̃(max(κ2λ, λ2))

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 23/23

Perspectives / Open problems

Obfuscation for evasive functions

Countermeasure on the attacks

Parameter constraints to prevent our classical attack2: n = Ω̃(κ2λ)

This constraint agrees to the current best algorithms to solve the
overstretched NTRU problem

Remark

Proofs in idealized models VS Constructions with concrete schemes

Concrete schemes do not fit in the idealized model

⇒ This gap can cause the significant weakness of concrete scheme!

2n: dimension of space, κ: multilinearity level, λ: security parameter
To prevent classical PIP attack and our attack: n = Ω̃(max(κ2λ, λ2))

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 23/23

Perspectives / Open problems

Obfuscation for evasive functions

Countermeasure on the attacks

Parameter constraints to prevent our classical attack2: n = Ω̃(κ2λ)

This constraint agrees to the current best algorithms to solve the
overstretched NTRU problem

Remark

Proofs in idealized models VS Constructions with concrete schemes

Concrete schemes do not fit in the idealized model

⇒ This gap can cause the significant weakness of concrete scheme!

2n: dimension of space, κ: multilinearity level, λ: security parameter
To prevent classical PIP attack and our attack: n = Ω̃(max(κ2λ, λ2))

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 23/23

References I

Benny Applebaum and Zvika Brakerski.

Obfuscating circuits via composite-order graded encoding.
In TCC 2015, pages 528–556, 2015.

Martin R. Albrecht, Shi Bai, and Léo Ducas.

A subfield lattice attack on overstretched NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes.
In Crypto 2016, pages 153–178, 2016.

Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai.

Optimizing obfuscation: Avoiding barrington’s theorem.
In CCS 2014, pages 646–658. ACM, 2014.

Jean-François Biasse, Thomas Espitau, Pierre-Alain Fouque, Alexandre Gélin, and Paul Kirchner.

Computing generator in cyclotomic integer rings.
In Eurocrypt 2017, pages 60–88. Springer, 2017.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.

On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1–18. Springer, 2001.

Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.

Protecting obfuscation against algebraic attacks.
In Eurocrypt 2014, pages 221–238, 2014.

Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.

Post-zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.
In Eurocrypt 2016, pages 764–791, 2016.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 24/23

References II

Zvika Brakerski and Guy N Rothblum.

Obfuscating conjunctions.
Crypto 2014, 2014.

Jean-François Biasse and Fang Song.

Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree
number fields.
In SODA 2016, pages 893–902. Society for Industrial and Applied Mathematics, 2016.

Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev.

Recovering short generators of principal ideals in cyclotomic rings.
In Eurocrypt 2016, pages 559–585, 2016.

Yilei Chen, Craig Gentry, and Shai Halevi.

Cryptanalyses of candidate branching program obfuscators.
In Eurocrypt 2017, pages 278–307. Springer, 2017.

Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee.

An algorithm for ntru problems and cryptanalysis of the ggh multilinear map without a low-level encoding of zero.
LMS Journal of Computation and Mathematics, 19(A):255–266, 2016.

Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee.

Obfuscation from low noise multilinear maps.
ePrint, Report 2016/599, 2016.

Rex Fernando, Peter Rasmussen, and Amit Sahai.

Preventing CLT attacks on obfuscation with linear overhead.
In Asiacrypt 2017, pages 242–271, 2017.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 25/23

References III

Sanjam Garg, Craig Gentry, and Shai Halevi.

Candidate multilinear maps from ideal lattices.
In Eurocrypt 2017, pages 1–17. Springer, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits.
FOCS 2013, 2013.

Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark Zhandry.

Secure obfuscation in a weak multilinear map model.
In TCC 2016, pages 241–268, 2016.

Paul Kirchner and Pierre-Alain Fouque.

Revisiting lattice attacks on overstretched ntru parameters.
In Eurocrypt 2017, pages 3–26. Springer, 2017.

Eric Miles, Amit Sahai, and Mor Weiss.

Protecting obfuscation against arithmetic attacks.
ePrint, Report 2014/878, 2014.

Eric Miles, Amit Sahai, and Mark Zhandry.

Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
In Crypto 2016, pages 629–658, 2016.

Rafael Pass, Karn Seth, and Sidharth Telang.

Indistinguishability obfuscation from semantically-secure multilinear encodings.
In Crypto 2014, pages 500–517, 2014.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 26/23

References IV

Joe Zimmerman.

How to obfuscate programs directly.
In Eurocrypt 2015, pages 439–467, 2015.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 27/23

	Simple obfuscator
	GGH13 multilinear map
	Contributions

