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What is this talk about

Two partial attacks against some candidate obfuscators built upon the
GGH13 multilinear map [GGH13a]

an attack for specific choices of parameters

a quantum attack

Main idea of the two attacks

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 2/23



Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C )(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C ) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

Many cryptographic constructions from iO: functional encryption, deniable
encryption, NIZKs, oblivious transfer, . . .
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Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps
(mmap).

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . . ).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weaknesses of GGH13 to mount concrete
attacks against some iO using it.
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History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], first candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b] (in input-partitionable case)

2017: [FRS17], prevent [CGH17] attack
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State of the art and contributions

This work 2‡

[Pel18]

This work 1†

[CHKL18]

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators Circuit
obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

XXX

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for specific choices of parameters
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Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions
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Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),

two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1
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Cryptographic multilinear maps

Definition: κ-multilinear map

Different levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True iff a = 0.

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 9/23



Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc( )

Enc( )

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc( )

Enc( )

A4

?

R−1
4Enc( )

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23



Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A00

R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc( )

Enc( )

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc( )

Enc( )

A4

?

R−1
4Enc( )

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23



Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0

R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc( )

Enc( )

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc( )

Enc( )

A4

?

R−1
4

Enc( )

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23



Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−1
1 R2

R−1
1 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−1
2 R3

R−1
2 R3

α2,0×

α2,1×

Enc( )

Enc( )

A3,0

A3,1

B3,0

B3,1

R−1
3 R4

R−1
3 R4

α3,0×

α3,1×

Enc( )

Enc( )

A4

?

R−1
4Enc( )

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 10/23



Simple obfuscator

Input: A branching program

Randomize the branching program

Add random diagonal blocks
Killian’s randomization
Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0
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Ã2,0
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Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions
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The GGH13 multilinear map

Define R = Z[X ]/(X n + 1) with n = 2k .

The plaintext space is P = R/〈g〉
for a “small” element g in R.

The encoding space is Rq = R/(qR) = Zq[X ]/(X n + 1)
for a “large” integer q.

Notation

We write [x ]q the elements in Rq for x ∈ R.
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The GGH13 multilinear map: encodings and zero-test

Sample z uniformly in Rq and h in R of the order of q1/2.

Encoding: An encoding of a at level i is

u = [(a + rg)z−i ]q

where a + rg is a small element in a + 〈g〉.

Zero-testing: A zero-testing parameter is defined by

pzt = [zκhg−1]q.

Zero-test

To test if u = [cz−κ]q is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt ]q = [chg−1]q.

This is small iff c is a small multiple of g .
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Outline

1 Simple obfuscator

2 GGH13 multilinear map

3 Contributions
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Global ideas of the two attacks

Main idea

Transform known weaknesses of the GGH13 map into concrete attacks
against the candidate obfuscators.

Attack 1 [CHKL18]:

NTRU attack [ABD16, CJL16, KF17]
recover multiple of sensitive elements
classical polynomial time, for specific choices of parameters

Attack 2 [Pel18]:

short principal ideal solver [CDPR16]
recover a sensitive element
quantum polynomial time [BS16] (or classical sub-exponential time [BEF+17]
for specific (unused) choices of parameters)
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Attack 1: Starting point = NTRU

For two encodings [a1 · z−1]q, [a2 · z−1]q for small a1, a2, we can compute

[a1 · z−1]q · [a2 · z−1]−1
q = [a1/a2]q

NTRU problem [ABD16, CJL16, KF17]

Let a1, a2 be sufficiently small elements of R. For a given NTRU instance
[a1/a2]q, we can efficiently recover

(c · a1, c · a2) ∈ R2

for some small c for a given NTRU instance.

For another encoding [a3 · z−1]q, compute

[a3 · z−1]q/[a1 · z−1]q · (c · a1) = c · a3 ∈ R.

Thus we can compute (cai ∈ R)i using ([ai · z−1]q)i .
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Attack 1

Input: An obfuscated program O(P) and plain program Q
De-randomize the branching program

Solve NTRU simultaneously
Recover 〈g〉 using zero of program
Distinguish by Matrix Zeroizing Attack

Result: Distinguishing Attack: P = Q?

Enc(Ã0)

Enc(Ã1,0)

Enc(Ã1,1)

Enc(Ã2,0)

Enc(Ã2,1)

Enc(Ã3,0)

Enc(Ã3,1)

Enc(Ã4)

These matrices ∈ R rather that Rq

cÃ mod g do not contain the randomness r and level parameter z
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c3,1(Ã3,1 + R3,1g)
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Enc(0) [rg/zκ]q

⇒
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Attack 1: Mixed-input Attack

We remove the effects of scalar bundlings using algebraic ways

(omitted)

Mixed-input attack can be carried out!

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs

i 1 2 3

inp(i) 1 1 2

∑

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

B̃0

B̃1,0

B̃1,1

B̃2,0

B̃2,1

B̃3,0

B̃3,1

B̃4

outputs zero outputs non-zero
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Ã2,1

Ã3,0

Ã3,1

Ã4
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Attack 1: Matrix Zeroizing Attack

We remove the effects of scalar bundlings using algebraic ways (omitted)

Matrix-zeroizing attack: extended mixed-input attack

Invalid inputs can induce the different outputs of equivalent BPs

Summation of mixed-input can yield the different outputs of BPs
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Attack 2: Starting point = Principal Ideal Problem

Given an obfuscated branching program, the evaluation of program is
determined, for κ level encoding u, by the value

[upzt ]q.

When output of program is 1, u = [rg/zκ]q holds and [upzt ]q = rh ∈ R.

Short Principal Ideal Problem [BS16, CDPR16]

Given many multiples of h, we can recover

h ∈ R

in quantum polynomial time.

We can compute the double-zero testing value at level 2κ as follows.

[(pzt/h)2]q = [z2κ · g−2]q

Remark: every computations works correctly.
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Attack 2: Mixed-input Attack

Run mixed-input attack on obfuscated program at level κ

We cannot evaluate it in obfuscated program due to constructions

Construct 2κ-level obfuscated program

Run mixed-input attack on obfuscated program at level 2κ

i 1 2 3

inp(i) 1 1 2

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4

Ã0

Ã1,0

Ã1,1

Ã2,0

Ã2,1

Ã3,0

Ã3,1

Ã4
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Ã3,1

Ã4
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Ã1,0
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Ã2,1
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Ã1,1
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Ã1,0
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Ã1,1
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Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!

We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!

We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Work in progress

Quantum attack on [GGH+13b]

Applying (modified) matrix-zeroizing attack!
We show that this combination of two work can obtain a quantum
polynomial time distinguishing attack on [GGH+13b]

Classical attack for circuit obfuscations

Extending the NTRU attack!
We also try to find a countermeasure on the attack

M. Hhan, A. Pellet-Mary Cryptanalysis of branching program obfuscators Crypto 2018 22/23



Perspectives / Open problems

Obfuscation for evasive functions

Countermeasure on the attacks

Parameter constraints to prevent our classical attack2: n = Ω̃(κ2λ)

This constraint agrees to the current best algorithms to solve the
overstretched NTRU problem

Remark

Proofs in idealized models VS Constructions with concrete schemes

Concrete schemes do not fit in the idealized model

⇒ This gap can cause the significant weakness of concrete scheme!

2n: dimension of space, κ: multilinearity level, λ: security parameter
To prevent classical PIP attack and our attack: n = Ω̃(max(κ2λ, λ2))
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