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1 i0 achieves “best possible” obfuscation

Proof:
> let O be an iO obfuscator and O’ be another obfuscator
» forany C € C, O(C) ~. O(0'(C))
» O(0’(C)) reveals less info than O'(C)
» O(C) reveals less info than O’(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, ...
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Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)J

Three main candidate multilinear maps: GGH13, CLT13, GGH15
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Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. .. ).
= all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.
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2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for specific choices of
parameters
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A branching program is a way of representing a function (like a Turing
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Cryptographic multilinear maps

Definition: x-multilinear map

Different levels of encodings, from 1 to k.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(ai, i), Enc(az,i)) = Enc(a; + az, /).
Multiplication: Mult(Enc(ai, /), Enc(az,j)) = Enc(a; - a2, i + j).

Zero-test: Zero-test(Enc(a, x)) = True iff a = 0.
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Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors
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GGH13 in a quantum world

Reminder: x-multilinear map

Different levels of encodings, from 1 to .
Denote by Enc(a, i) a level-i encoding of the message a .

Addition: Add(Enc(a1, /), Enc(az,i)) = Enc(a; + ap, /).
Multiplication: Mult(Enc(ay, /), Enc(az,/)) = Enc(a;y - az, i + ).
Zero-test: Zero-test(Enc(a, x)) = True iff a = 0.
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Denote by Enc(a, i) a level-i encoding of the message a € Z/pZ.

Addition: Add(Enc(a1, /), Enc(az,i)) = Enc(a; + ap, /).
Multiplication: Mult(Enc(ay,7), Enc(az,j)) = Enc(a;y - az, i + ).
Zero-test: Zero-test(Enc(a,x)) = True iff a=0 mod p.

With a quantum computer

Double-zero-test(Enc(a, 2x)) = True iff a =0 mod p?
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Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao —
= As
A1,0 A2.0 A3,0
X1 X2 X1
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Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)
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Mixed-input attack

Notations
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011X |A1 1 21X |Az 1 31X |Az 1
Ao
- Ag
a1,0X |A1,0 20X |Az 0 30X |Az
X1 X2 X1
0 0 1
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Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

Enc(|A; ;
Enc(4o,1)
Enc( m
X1
0
A. Pellet-Mary

71) EI"IC( A21 ’1) Enc(

,1) Enc(,a;/o,l) Enc(

X2

0
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A3 1

A3 0

X1
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=
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Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: k=5

) )
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E”C(E ;1) Enc(|]A21],1) Enc(|A34],1)

Enc(,ZL/O ,1) Enc(,z\gjo , 1) Enc(|A3,/,1)

)
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Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: x =6
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Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

Mmap degree: kK =6

Enc(
Enc(A. 1)

Enc(

A. Pellet-Mary

A1 1

A1,0

X1

0

1)

Enc(

Enc(

Az 1

)

A0

X2

, 1) Enc(

,1)  Enc(
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Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

Mmap degree: kK =6

Enc(
Enc(A. 1)

Enc(

A. Pellet-Mary

A1 1

A1,0

X1

0

1)

2)

Enc(

Enc(

Az 1

)

A0

X2

0

1)

1)

Enc(

Enc(

As 1

Az 0

X1
1

Total level: 7 = cannot zero-test

Quantum attack against some iO
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Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?
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In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc( ,1) Enc( ,1) Enc( ,2)

Enc(4y,1)
— | Enc(a,.1) = Level 7
Enc(,2) Enc(71) Enc(Z; ,1)
X1 X2 X1
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X1 X2 X1
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Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc( ,1) Enc( ,1) Enc( ,2)

Enc(4,, 1
(Ag, 1) |Encc4”4,1) = Level 7
Enc(,2) Enc(@ﬂ) E"C(E71)
X1 X2 X1
Enc(fr] 1) Enc((p].1) Encl(sg].2)
Enc(4y, 1)

|Enc(i,. 1) = Level 5

Enc(,2) Enc(71) Enc(A3,671)

X1 X2 X1

‘ Product level: 12 = 2k
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iO distinguishing attack

Reminder: iO

VG = G, 0(G) ~ 0(G)
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iO distinguishing attack

Reminder: iO

VCl = C2, O(Cl) ~c O(C2)

Objective: Find (G = ( s.t. double mixed input product is 0 on G
and #0on G, e.g.

@ the two mixed-input are 0 mod p for ¢4
= product is 0 mod p?

@ the two mixed-input are 20 mod p for G
= product is # 0 mod p?
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One example of C; and G

G G 6

Ci: (1 0) (2) =Vx, G(x)=0

G G )

X1 X2 X1
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G G 6

Ci: (1 0) 0 =Vx, G(x)=0
GO 6D 69 0
10 10 10

G (10 ( ) (0 1) ( ) (‘1’) = Vx, Gy(x) =0
(o) G2 (o
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One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G 6 0
10 10 10

. i o) 0 1) (0 1) ( 1) ((1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;
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One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G2 6 0
10 10 10

. i o) 0 1) (0 1) < 1> ((1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;

@ the two mixed-input products are # 0 for G,

A. Pellet-Mary uantum attack against some i Séminaire C2

18/20



One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G2 6 0
10 10 10

. i o) 0 1) (0 1) < 1> <(1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;
@ the two mixed-input products are # 0 for G,

We can distinguish O(C;) from O( ()
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Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)
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Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?
@ Previous schemes prevent mixed-input attack using the randomization

phase

» difficult to get a security proof
@ New schemes use the mmap
> easy to get a proof (in idealized model)

@ GGH13 mmap is not ideal

» easier for an attacker to exploit its weakness
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Conclusion (2/2)

Remarks

o Quantum poly time or classical 20V time
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Conclusion (2/2)

i0 (using Branching program obfuscators Circuit
GGH13) obfuscators
. [AGIS14, MSVJ\r/14] . (Zim15, ABI15]
Attacks [GGH*13b] [BR14] [PST14, BGK*14] [[GMM*16]) ™ - o
[BMSZ16]
[MSZ16] v Y
[CGH17]* v
[CHKL18] v v v Y
This talk? v v v

* for input-partitionable branching programs

t for specific choices of parameters

A. Pellet-Mary

Quantum attack against some iO

¥ in the quantum setting
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Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
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Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

Open problems
@ Quantum attack against [GGHT13b]

@ Obfuscation for evasive functions

Questions?

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
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The GGH13 multilinear map

o Define R = Z[X]/(X" + 1) with n = 2k,
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@ Sample g a “small” element in R.
= the plaintext space is P = R/(g).
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The GGH13 multilinear map

o Define R = Z[X]/(X" + 1) with n = 2k,
@ Sample g a “small” element in R.
= the plaintext space is P = R/(g).

@ Sample g a “large” integer.
= the encoding space is Ry = R/(qR) = Zq[X]/(X" + 1).

Notation
We write [r]q or [r] the elements in Ry.
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The GGH13 multilinear map: encodings

e Sample z uniformly in Rj.

e Encoding: An encoding of a at level / is

. {a —|—irg}
z q

where a + rg is a small element in a+ (g).

A. Pellet-Mary Quantum attack against some iO Séminaire C2 25/20



The GGH13 multilinear map: encodings

e Sample z uniformly in Rj.

e Encoding: An encoding of a at level / is

. [a —|—irg]
z q

where a + rg is a small element in a+ (g).

Addition and multiplication

Addition:
[al-l-rlg] N a+ng| a1+az+r’g}
i I e S
z g L % l¢ L z q
Multiplication:
[a1+f1g] [ap + g | . _al'az-f-f/g]
i g | ZH |
z g L & g L 2 q
y
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The GGH13 multilinear map: zero-test

e Sample hin R of the order of g1/2.

@ Define
Pzt = [Znhg_l]q‘

A. Pellet-Mary Quantum attack against some iO



The GGH13 multilinear map: zero-test

e Sample hin R of the order of g1/2.
@ Define
Pzt = [Zﬁhg_l]q-
Zero-test

To test if u = [c/z"] is an encoding of zero (i.e. ¢ =0 mod g), compute

[u- pztlq = [chg g

This is small iff ¢ is a small multiple of g.
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Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg ], J
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Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg ], J

o Get multiple top-level encoding of zero u; = [cig/z"]q
o Zero-test them = [ujp,]q = cih
@ Recover ideal (h) from the ¢;jh
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Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg ], }

o Get multiple top-level encoding of zero u; = [cig/z"]q

@ Zero-test them = [ujp,]q = cih

@ Recover ideal (h) from the ¢;jh

@ Recover h from (h) (quantum poly time [BS16, CDPR16])

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields, SODA.
[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
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Zero-test: p,r = [z"hg ], }

o Get multiple top-level encoding of zero u; = [cig/z"]q
Zero-test them = [ujpst]q = cih

Recover ideal (h) from the c;h

Recover h from (h) (quantum poly time [BS16, CDPR16])

Create p}, = [Pgt/h2]q = [22”g_2]q
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and solving the principal ideal problem in arbitrary degree number fields, SODA.
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Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg 1], J

o Get multiple top-level encoding of zero u; = [cig/z"]q
Zero-test them = [ujpst]q = cih

Recover ideal (h) from the c;h

Recover h from (h) (quantum poly time [BS16, CDPR16])

Create p}, = [Pgt/h2]q = [22”g_2]q

[upl]q small < u = [cg?/z*"], for some small ¢

& uis a double zero at level 2k

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
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