
Quantum attack against some candidate obfuscators
based on GGH13

Alice Pellet-Mary

LIP, ENS de Lyon

Séminaire C2
November 16, 2018

A. Pellet-Mary Quantum attack against some iO Séminaire C2 1/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

I GGH13 is known to be weak in quantum world

I Transform this weakness into concrete attack on obfuscators

I Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal

lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

I GGH13 is known to be weak in quantum world

I Transform this weakness into concrete attack on obfuscators

I Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal

lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

I GGH13 is known to be weak in quantum world

I Transform this weakness into concrete attack on obfuscators

I Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal

lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

I GGH13 is known to be weak in quantum world

I Transform this weakness into concrete attack on obfuscators

I Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal

lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an e�ciently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an e�ciently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an e�ciently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C (impossible, [BGI+01])

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an e�ciently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C) acts as a black box computing C (impossible, [BGI+01])

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C) 'c O(O ′(C))

I O(O ′(C)) reveals less info than O ′(C)

I O(C) reveals less info than O ′(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps su�er from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps su�er from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps su�er from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . .).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

State of the art and contribution

This talk‡

[CHKL18]†

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators
Circuit

obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

X X X

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for speci�c choices of parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 7/20

State of the art and contribution

This talk‡

[CHKL18]†

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators
Circuit

obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

X X X

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for speci�c choices of parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 7/20

Outline of the talk

1 Simple obfuscator

2 The attack

A. Pellet-Mary Quantum attack against some iO Séminaire C2 8/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7
= 0→ 0
6= 0→ 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Cryptographic multilinear maps

De�nition: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 10/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A00

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14

Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

Ã3,0

Ã3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−14Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

Ã3,0

Ã3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−14

Enc()

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Outline of the talk

1 Simple obfuscator

2 The attack

A. Pellet-Mary Quantum attack against some iO Séminaire C2 12/20

GGH13 in a quantum world

Reminder: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a .

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.

With a quantum computer

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

A. Pellet-Mary Quantum attack against some iO Séminaire C2 13/20

GGH13 in a quantum world

The GGH13 map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a ∈ Z/pZ.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0 mod p.

With a quantum computer

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

A. Pellet-Mary Quantum attack against some iO Séminaire C2 13/20

GGH13 in a quantum world

The GGH13 map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a ∈ Z/pZ.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0 mod p.

With a quantum computer

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

A. Pellet-Mary Quantum attack against some iO Séminaire C2 13/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1

1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2

1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1

1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1
1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1
1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
0

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
0

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

0
R1

Enc(, 1)

Â1,0

Â1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Â4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Ã0

0
R1

Enc(, 1)

Ã1,0

Ã1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Ã4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

A00

R1

Enc(, 1)

A1,0

A1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

A2,0

A2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

A3,0

A3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

A4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

A0

0

R1

Enc(, 1)

A1,0

A1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

A2,0

A2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

A3,0

A3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

A4

?

R−14

Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

A0

0
R1

Enc(, 1)

A1,0

A1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

A2,0

A2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

A3,0

A3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

A4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Ã0

0
R1

Enc(, 1)

Ã1,0

Ã1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Ã4

?

R−14Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Ã0

0
R1

Enc(, 1)

Ã1,0

Ã1,1

x1
0

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc(, 1)

Enc(, 1)

Ã4

?

R−14

Enc(, 1)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree:

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree:

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 5

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1
0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1
0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 7

×

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 5

Product level: 12 = 2κ

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 7

×

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 5

Product level: 12 = 2κ

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 7

×

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 5

Product level: 12 = 2κ

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 7

× Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 5

Product level: 12 = 2κ

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 7

× Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1) ⇒ Level 5

Product level: 12 = 2κ

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

iO distinguishing attack

Reminder: iO

∀C1 ≡ C2, O(C1) 'c O(C2)

Objective: Find C1 ≡ C2 s.t. double mixed input product is 0 on C1

and 6= 0 on C2, e.g.

the two mixed-input are 0 mod p for C1

⇒ product is 0 mod p2

the two mixed-input are 6= 0 mod p for C2

⇒ product is 6= 0 mod p2

A. Pellet-Mary Quantum attack against some iO Séminaire C2 17/20

iO distinguishing attack

Reminder: iO

∀C1 ≡ C2, O(C1) 'c O(C2)

Objective: Find C1 ≡ C2 s.t. double mixed input product is 0 on C1

and 6= 0 on C2, e.g.

the two mixed-input are 0 mod p for C1

⇒ product is 0 mod p2

the two mixed-input are 6= 0 mod p for C2

⇒ product is 6= 0 mod p2

A. Pellet-Mary Quantum attack against some iO Séminaire C2 17/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 18/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?

Previous schemes prevent mixed-input attack using the randomization
phase

I di�cult to get a security proof

New schemes use the mmap
I easy to get a proof (in idealized model)

GGH13 mmap is not ideal
I easier for an attacker to exploit its weakness

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?

Previous schemes prevent mixed-input attack using the randomization
phase

I di�cult to get a security proof

New schemes use the mmap
I easy to get a proof (in idealized model)

GGH13 mmap is not ideal
I easier for an attacker to exploit its weakness

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?

Previous schemes prevent mixed-input attack using the randomization
phase

I di�cult to get a security proof

New schemes use the mmap
I easy to get a proof (in idealized model)

GGH13 mmap is not ideal
I easier for an attacker to exploit its weakness

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?

Previous schemes prevent mixed-input attack using the randomization
phase

I di�cult to get a security proof

New schemes use the mmap
I easy to get a proof (in idealized model)

GGH13 mmap is not ideal
I easier for an attacker to exploit its weakness

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

This talk‡

[CHKL18]†

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators
Circuit

obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

X X X

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for speci�c choices of parameters

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

References I

Benny Applebaum and Zvika Brakerski.

Obfuscating circuits via composite-order graded encoding.
In TCC 2015, pages 528�556, 2015.

Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai.

Optimizing obfuscation: Avoiding barrington's theorem.
In CCS 2014, pages 646�658. ACM, 2014.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.

On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1�18. Springer, 2001.

Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.

Protecting obfuscation against algebraic attacks.
In Eurocrypt 2014, pages 221�238, 2014.

Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.

Post-zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.
In Eurocrypt 2016, pages 764�791, 2016.

Zvika Brakerski and Guy N Rothblum.

Obfuscating conjunctions.
Crypto 2014, 2014.

Jean-François Biasse and Fang Song.

E�cient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary
degree number �elds.
In SODA 2016, pages 893�902. Society for Industrial and Applied Mathematics, 2016.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 21/20

References II

Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev.

Recovering short generators of principal ideals in cyclotomic rings.
In Eurocrypt 2016, pages 559�585, 2016.

Yilei Chen, Craig Gentry, and Shai Halevi.

Cryptanalyses of candidate branching program obfuscators.
In Eurocrypt 2017, pages 278�307. Springer, 2017.

Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee.

Cryptanalyses of branching program obfuscations over ggh13 multilinear map from the ntru problem.
In Crypto 2018, pages 184�210. Springer, 2018.

Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee.

Obfuscation from low noise multilinear maps.
ePrint, Report 2016/599, 2016.

Rex Fernando, Peter Rasmussen, and Amit Sahai.

Preventing CLT attacks on obfuscation with linear overhead.
In Asiacrypt 2017, pages 242�271, 2017.

Sanjam Garg, Craig Gentry, and Shai Halevi.

Candidate multilinear maps from ideal lattices.
In Eurocrypt 2013, pages 1�17. Springer, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits.
FOCS 2013, 2013.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 22/20

References III

Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark Zhandry.

Secure obfuscation in a weak multilinear map model.
In TCC 2016, pages 241�268, 2016.

Eric Miles, Amit Sahai, and Mor Weiss.

Protecting obfuscation against arithmetic attacks.
ePrint, Report 2014/878, 2014.

Eric Miles, Amit Sahai, and Mark Zhandry.

Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
In Crypto 2016, pages 629�658, 2016.

Rafael Pass, Karn Seth, and Sidharth Telang.

Indistinguishability obfuscation from semantically-secure multilinear encodings.
In Crypto 2014, pages 500�517, 2014.

Joe Zimmerman.

How to obfuscate programs directly.
In Eurocrypt 2015, pages 439�467, 2015.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 23/20

The GGH13 multilinear map

De�ne R = Z[X]/(X n + 1) with n = 2k .

Sample g a �small� element in R .
⇒ the plaintext space is P = R/〈g〉.
Sample q a �large� integer.
⇒ the encoding space is Rq = R/(qR) = Zq[X]/(X n + 1).

Notation

We write [r]q or [r] the elements in Rq.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 24/20

The GGH13 multilinear map

De�ne R = Z[X]/(X n + 1) with n = 2k .

Sample g a �small� element in R .
⇒ the plaintext space is P = R/〈g〉.

Sample q a �large� integer.
⇒ the encoding space is Rq = R/(qR) = Zq[X]/(X n + 1).

Notation

We write [r]q or [r] the elements in Rq.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 24/20

The GGH13 multilinear map

De�ne R = Z[X]/(X n + 1) with n = 2k .

Sample g a �small� element in R .
⇒ the plaintext space is P = R/〈g〉.
Sample q a �large� integer.
⇒ the encoding space is Rq = R/(qR) = Zq[X]/(X n + 1).

Notation

We write [r]q or [r] the elements in Rq.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 24/20

The GGH13 multilinear map: encodings

Sample z uniformly in Rq.

Encoding: An encoding of a at level i is

u =

[
a+ rg

z i

]
q

where a+ rg is a small element in a+ 〈g〉.

Addition and multiplication

Addition: [
a1 + r1g

z i

]
q

+

[
a2 + r2g

z i

]
q

=

[
a1 + a2 + r ′g

z i

]
q

.

Multiplication:[
a1 + r1g

z i

]
q

·
[
a2 + r2g

z j

]
q

=

[
a1 · a2 + r ′g

z i+j

]
q

.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 25/20

The GGH13 multilinear map: encodings

Sample z uniformly in Rq.

Encoding: An encoding of a at level i is

u =

[
a+ rg

z i

]
q

where a+ rg is a small element in a+ 〈g〉.

Addition and multiplication

Addition: [
a1 + r1g

z i

]
q

+

[
a2 + r2g

z i

]
q

=

[
a1 + a2 + r ′g

z i

]
q

.

Multiplication:[
a1 + r1g

z i

]
q

·
[
a2 + r2g

z j

]
q

=

[
a1 · a2 + r ′g

z i+j

]
q

.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 25/20

The GGH13 multilinear map: zero-test

Sample h in R of the order of q1/2.

De�ne
pzt = [zκhg−1]q.

Zero-test

To test if u = [c/zκ] is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt]q = [chg−1]q.

This is small i� c is a small multiple of g .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 26/20

The GGH13 multilinear map: zero-test

Sample h in R of the order of q1/2.

De�ne
pzt = [zκhg−1]q.

Zero-test

To test if u = [c/zκ] is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt]q = [chg−1]q.

This is small i� c is a small multiple of g .

A. Pellet-Mary Quantum attack against some iO Séminaire C2 26/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

	Simple obfuscator
	The attack

