Quantum attack against some candidate obfuscators
based on GGH13

Alice Pellet-Mary
LIP, ENS de Lyon

Séminaire C2
November 16, 2018

A
0
I
)
I

European Research Council

Established by the European Commission

A. Pellet-Mary Quantum attack against some iO Séminaire C2

1/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal
lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

» GGH13 is known to be weak in quantum world

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal
lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about
Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

» GGH13 is known to be weak in quantum world

» Transform this weakness into concrete attack on obfuscators

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal
lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

» GGH13 is known to be weak in quantum world
» Transform this weakness into concrete attack on obfuscators

» Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal
lattices, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 2/20

Obfuscation

Obfuscator
An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

VC € C,¥x, C(x) = O(C)(x)

In this talk, C = polynomial size circuits

A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

VC € C,¥x, C(x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.
e VBB: O(C) acts as a black box computing C

A. Pellet-Mary Quantum attack against some iO Séminaire C2

3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

VC € C,Vx, C(x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.
o VBB:O{C)acts-asablack-boxcomputing—€ (impossible, [BGIT01])

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an efficiently computable
function over C such that

VC € C,Vx, C(x) = O(C)(x)

In this talk, C = polynomial size circuits

Security.

o VBB:O{C)acts-asablack-boxcomputing—€ (impossible, [BGIT01])
e i0: VCl = C2, i.e. C1(X) = C2(X) VX,

0(G) ~ 0(Q)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 3/20

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

A. Pellet-Mary Quantum attack against some iO

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

Proof:

» let O be an iO obfuscator and O’ be another obfuscator

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

Proof:

» let O be an iO obfuscator and O’ be another obfuscator
» forany C € C, O(C) ~. O(0'(C))

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

Proof:

> let O be an iO obfuscator and O’ be another obfuscator
» forany C € C, O(C) ~. O(0'(C))
» O(0'(C)) reveals less info than O'(C)

A. Pellet-Mary Quantum attack against some iO Séminaire C2

4/20

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

Proof:

> let O be an iO obfuscator and O’ be another obfuscator
» forany C €C, O(C) ~. O(0'(C))

O(0'(Q)) reveals less info than O'(C)

O(C) reveals less info than O’(C)

v

v

A. Pellet-Mary Quantum attack against some iO Séminaire C2

4/20

Why is iO interesting?

1 i0 achieves “best possible” obfuscation

Proof:
> let O be an iO obfuscator and O’ be another obfuscator
» forany C € C, O(C) ~. O(0'(C))
» O(0’(C)) reveals less info than O'(C)
» O(C) reveals less info than O’(C)

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, ...

A. Pellet-Mary Quantum attack against some iO Séminaire C2 4/20

Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)J

Three main candidate multilinear maps: GGH13, CLT13, GGH15

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

Multilinear maps (mmaps) and iO

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Observation J

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. ..).
= all current attacks against iO rely on the underlying mmap

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

Multilinear maps (mmaps) and iO

Observation J

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps suffer from weaknesses
(e.g. encodings of zero, zeroizing attacks,. ..).
= all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 5/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

A. Pellet-Mary Quantum attack against some iO

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGHT13b], first candidate

2014-2016: [AGIS14, BGKT 14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGHT13b], first candidate

2014-2016: [AGIS14, BGKT 14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGHT13b]
2016: [GMM™16], proof in a weaker idealized model (captures [MSZ16])

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGHT13b], first candidate

2014-2016: [AGIS14, BGKT 14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGHT13b]
2016: [GMM™16], proof in a weaker idealized model (captures [MSZ16])
2017: [CGH17], attack against [GGHT13b], in input-partitionable case
2017: [FRS17], prevent [CGH17] attack

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGHT13b], first candidate

2014-2016: [AGIS14, BGKT 14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGHT13b]
2016: [GMM™16], proof in a weaker idealized model (captures [MSZ16])
2017: [CGH17], attack against [GGHT13b], in input-partitionable case
2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for specific choices of
parameters

A. Pellet-Mary Quantum attack against some iO Séminaire C2 6/20

State of the art and contribution

.) _ Circuit
,OG(CL;::; Branching program obfuscators obfuscators
; [AGIS14, MSW14] | [Zim15, AB15]
Attacks [GGH*13b] [BR14] [PST14, BGK "14] [[GMM “16]|) -1 0
[BMSZ16]
[MSZ16] v v
[CGH17]* v
[CHKL18]t v v v v
This talk! v v Y

* for input-partitionable branching programs

t for specific choices of parameters

A. Pellet-Mary

Quantum attack against some iO

tin the quantum setting

Séminaire C2 7/20

State of the art and contribution

.) _ Circuit
,OG(CL;::; Branching program obfuscators obfuscators
; [AGIS14, MSW14] | [Zim15, AB15]
Attacks [GGH*13b] [BR14] [PST14, BGK "14] [[GMM “16]|) -1 0
[BMSZ16]
[MSZ16] v v
[CGH17]* v
[CHKL18]t v v v v
This talk! v v Y

* for input-partitionable branching programs

t for specific choices of parameters

A. Pellet-Mary

Quantum attack against some iO

tin the quantum setting

Séminaire C2 7/20

Outline of the talk

@ Simple obfuscator

A. Pellet-Mary Quantum attack against some iO

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A. Pellet-Mary Quantum attack against some iO Séminaire C2 9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A A1 Azl As1 As1 As.1
0 A1 Az Az A As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A A1 Azl As1 As1 As.1
0 A1 Az Az A As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 [1]2]1]|3]2

A x A11 Azl As1 As1 As.1
0 Ar0 Az Az A As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |11]2]1]3]2

A x A11 o A1 As1 As1 As.1
0 A1 Az Az A As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A x A11 o A1 » A3l As1 As.1
0 A1 Az As0 A As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A x A1l o Ao 1 » Az 1 « As 1 As 1
0 A1 Az As0 Ag As 0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A x A1l y Ao 1 y Az 1 o As 1 « As.1
0 A1 Az As0 A As.0

A. Pellet-Mary Quantum attack against some iO

As,1
Ag.0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp()) |1 |1]2]1]|3]2

A x A1l y Ao 1 y Az 1 o As 1 « As 1
0 A1 Az As0 A As.0

A. Pellet-Mary Quantum attack against some iO

A1
As 0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A x A1l y Ao 1 y Az 1 o As 1 « As 1
0 A1 Az As0 A As.0

A. Pellet-Mary Quantum attack against some iO

As,1
As 0

A7

Séminaire C2

9/20

Branching programs

A branching program is a way of representing a function (like a Turing

machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp : {1,...,¢} — {1,...,r} (where r is the size of the

input).

i [1[2]3]4]5]6
inp() |1 |1]2]1]|3]2

A x A1l o Ao 1 » Az 1 « As 1 « As 1
0 A1 Az As0 A As.0

A. Pellet-Mary Quantum attack against some iO

As,1

X
As 0

=0—0
T4 01

Séminaire C2

9/20

Cryptographic multilinear maps

Definition: x-multilinear map

Different levels of encodings, from 1 to k.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(ai, i), Enc(az,i)) = Enc(a; + az, /).
Multiplication: Mult(Enc(ai, /), Enc(az,j)) = Enc(a; - a2, i + j).

Zero-test: Zero-test(Enc(a, x)) = True iff a = 0.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 10/20

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

Ao

A. Pellet-Mary

A11

)

Ao 1

A0

)

Quantum attack against some iO

Az 1

)

Séminaire C2

Ay

11/20

Simple obfuscator

Input: A branching program

Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors
Bi1 B> 1 Bs.1
A11 Az1 A3 1
0 Ao
Bio B> B3,
A10 A0 As.0
A. Pellet-Mary Quantum attack against some iO

Séminaire C2

Ay

11/20

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks

» Killian's randomization

» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

R!

A11

R>

Ry!

Ao 1

R3

Ry A3 1

R4

Ao

A. Pellet-Mary

R!

A10

)

R>

Ry!

A0

)

R3

)

R A0

Ra

Quantum attack against some iO

Séminaire C2

Ay

11/20

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

Ao

A. Pellet-Mary

11X

1.0 X

A11

A10

)

a1 X

Q20 X

Ao 1

A0

)

31X

@30 X

Quantum attack against some iO

Az 1

As.0

)

Séminaire C2

Ay

11/20

Simple obfuscator

@ Input: A branching program
@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

A10 /Z;,/o As3.0

A. Pellet-Mary Quantum attack against some iO Séminaire C2 11/20

Simple obfuscator

@ Input: A branching program
@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

Enc(|Ay 1)) Enc(|Az1]) Enc(|A; 4

))

Enc(4q)

Enc(Zro) Enc(,Z;O) Enc(/Z;,/o

A. Pellet-Mary Quantum attack against some iO

| Enc(a,)

~—

Séminaire C2 11/20

Outline of the talk

© The attack

A. Pellet-Mary Quantum attack against some iO

GGH13 in a quantum world

Reminder: x-multilinear map

Different levels of encodings, from 1 to .
Denote by Enc(a, i) a level-i encoding of the message a .

Addition: Add(Enc(a1, /), Enc(az,i)) = Enc(a; + ap, /).
Multiplication: Mult(Enc(ay, /), Enc(az,/)) = Enc(a;y - az, i +).
Zero-test: Zero-test(Enc(a, x)) = True iff a = 0.

A. Pellet-Mary Quantum attack against some iO Séminaire C2

13/20

GGH13 in a quantum world

The GGH13 map

Different levels of encodings, from 1 to .
Denote by Enc(a, i) a level-i encoding of the message a € Z/pZ.

Addition: Add(Enc(a1, /), Enc(az,i)) = Enc(a; + ap, /).
Multiplication: Mult(Enc(ay,7), Enc(az,j)) = Enc(a;y - az, i +).
Zero-test: Zero-test(Enc(a,x)) = True iff a=0 mod p.

A. Pellet-Mary Quantum attack against some iO Séminaire C2

13/20

GGH13 in a quantum world

The GGH13 map

Different levels of encodings, from 1 to .
Denote by Enc(a, i) a level-i encoding of the message a € Z/pZ.

Addition: Add(Enc(a1, /), Enc(az,i)) = Enc(a; + ap, /).
Multiplication: Mult(Enc(ay,7), Enc(az,j)) = Enc(a;y - az, i +).
Zero-test: Zero-test(Enc(a,x)) = True iff a=0 mod p.

With a quantum computer

Double-zero-test(Enc(a, 2x)) = True iff a =0 mod p?

A. Pellet-Mary Quantum attack against some iO Séminaire C2

13/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao —
= As
A1,0 A2.0 A3,0
X1 X2 X1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao _
- As
A1,0 A2.0 A3,0
X1 X2 X1
1 1 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao _
- As
A1,0 A2.0 A3,0
X1 X2 X1
1 0 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao _
- As
A1,0 A2.0 A3,0
X1 X2 X1
0 1 0

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao _
- As
A1,0 A2.0 A3,0
X1 X2 X1
0 0 0

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack
Notations
@ A; input branching program
° m after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A11 A21 A3 1
Ao _
- As
A1,0 A2.0 A3,0
X1 X2 X1
0 0 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A. Pellet-Mary

A1 1

A1,0

)

X1

Az 1

A2.0

)

X2

Quantum attack against some iO

A3 1

)

A3 0

)

X1

Séminaire C2

14/20

Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

—

o A after encoding with GGH13 map (output of the iO)

Bi1
A1l
0 Ao
B
1,0
A1,0
X1
0
A. Pellet-Mary

B>1

Ao 1

B3

B>

Az 0

)

Bso

X2

Quantum attack against some iO

Ay

Séminaire C2 14/20

Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

—

o A after encoding with GGH13 map (output of the iO)

A. Pellet-Mary

RIMALL Ry | Ry A1 R | Ry A Ra
RiAo Re| Ry 'A20| Rs | Ry 'Asg| Ra
X1 X2 X1
0 0 1

Quantum attack against some iO

R*

Séminaire C2

Ay

14/20

Mixed-input attack
Notations
@ A; input branching program
@ A, after randomisation

e A, after encoding with GGH13 map (output of the iO)

011X |A1 1 21X |Az 1 31X |Az 1
Ao
- Ag
a1,0X |A1,0 20X |Az 0 30X |Az
X1 X2 X1
0 0 1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 14/20

Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

A. Pellet-Mary

A1 1

A1,0

)

X1

Az 1

A2.0

)

X2

Quantum attack against some iO

A3 1

)

A3 0

)

X1

Séminaire C2

Ay

14/20

Mixed-input attack

Notations

@ A; input branching program

o A, after randomisation

° Z,-,\b after encoding with GGH13 map (output of the iO)

Enc(|A; ;
Enc(4o,1)
Enc(m
X1
0
A. Pellet-Mary

71) EI"IC(A21 ’1) Enc(

,1) Enc(,a;/o,l) Enc(

X2

0

Quantum attack against some iO

A3 1

A3 0

X1
1

=
~—

| Enc(4,.1)

=
~—

Séminaire C2

14/20

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

A. Pellet-Mary Quantum attack against some iO

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: k=5

))

Enc(Ag, 1
(—0) |Ean\v4,1)

E”C(E ;1) Enc(|]A21],1) Enc(|A34],1)

Enc(,ZL/O ,1) Enc(,z\gjo , 1) Enc(|A3,/,1)

)

X1 X2 X1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: x =6

))

Enc(Ag, 1
(—0) |Ean\v4,1)

E”C(E ;1) Enc(]A21],1) Enc(|A34],2)

Enc(,ZL/O ,2) Enc(,z\gjo , 1) Enc(|A3,/,1)

)

X1 X2 X1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 15/20

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

Mmap degree: kK =6

Enc(
Enc(A. 1)

Enc(

A. Pellet-Mary

A1 1

A1,0

X1

0

1)

Enc(

Enc(

Az 1

)

A0

X2

, 1) Enc(

,1) Enc(

Quantum attack against some iO

As 1

Az 0

)

X1

:2)

1)

|EnCCé\Z, 1)

Séminaire C2

15/20

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

Mmap degree: kK =6

Enc(
Enc(A. 1)

Enc(

A. Pellet-Mary

A1 1

A1,0

X1

0

1)

2)

Enc(

Enc(

Az 1

)

A0

X2

0

1)

1)

Enc(

Enc(

As 1

Az 0

X1
1

Total level: 7 = cannot zero-test

Quantum attack against some iO

:2)

|Enc(ﬁ£,1)

1)

Séminaire C2

15/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

A. Pellet-Mary Quantum attack against some iO

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc(,1) Enc(,1) Enc(,2)

Enc(4y,1)
— | Enc(a,.1) = Level 7
Enc(,2) Enc(71) Enc(Z; ,1)
X1 X2 X1
A. Pellet-Mary Quantum attack against some iO Séminaire C2

16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc(,1) Enc(,1) Enc(,2)

Enc(4,, 1
(Ag, 1) |Encc4”4,1) = Level 7
Enc(,2) Enc(71) E"C(Z;J)
X1 X2 X1
Enc(,l) Enc(yl) Enc(,Q)
Enc(Ag, 1)

|E"CC4V471) = Level 5

Enc(,2) Enc(,1) Enc(m ,1)

X1 X2 X1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc(,1) Enc(,1) Enc(,2)

Enc(4,, 1
(Ag, 1) |Encc4”4,1) = Level 7
Enc(,2) Enc(71) E"C(Z;J)
X1 X2 X1
Enc(,l) Enc(yl) Enc(,Q)
Enc(Ag, 1)

|E"CC4V471) = Level 5

Enc(,2) Enc(,1) Enc(m ,1)

X1 X2 X1

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2x)) = True iff a=0 mod p?

Enc(,1) Enc(,1) Enc(,2)

Enc(4,, 1
(Ag, 1) |Encc4”4,1) = Level 7
Enc(,2) Enc(@ﬂ) E"C(E71)
X1 X2 X1
Enc(fr] 1) Enc((p].1) Encl(sg].2)
Enc(4y, 1)

|Enc(i,. 1) = Level 5

Enc(,2) Enc(71) Enc(A3,671)

X1 X2 X1

‘ Product level: 12 = 2k

A. Pellet-Mary Quantum attack against some iO Séminaire C2 16/20

iO distinguishing attack

Reminder: iO

VG = G, 0(G) ~ 0(G)

A. Pellet-Mary Quantum attack against some iO

iO distinguishing attack

Reminder: iO

VCl = C2, O(Cl) ~c O(C2)

Objective: Find (G = (s.t. double mixed input product is 0 on G
and #0on G, e.g.

@ the two mixed-input are 0 mod p for ¢4
= product is 0 mod p?

@ the two mixed-input are 20 mod p for G
= product is # 0 mod p?

A. Pellet-Mary Quantum attack against some iO Séminaire C2

17/20

One example of C; and G

G G 6

Ci: (1 0) (2) =Vx, G(x)=0

G G)

X1 X2 X1

A. Pellet-Mary Quantum attack against some iO

One example of C; and G

G G 6

Ci: (1 0) 0 =Vx, G(x)=0
GO 6D 69 0
10 10 10

G (10 () (0 1) () (‘1’) = Vx, Gy(x) =0
(o) G2 (o

A. Pellet-Mary

One example of C; and G

G G 6

Ci: (1 0) 0 =Vx, G(x)=0
GO 6D 69 0
10 10 10

G (10 () (0 1) () (‘1’) = Vx, Gy(x) =0
(o) G2 (o

[+ C1 = C2

A. Pellet-Mary

One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G 6 0
10 10 10

. i o) 0 1) (0 1) (1) ((1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;

A. Pellet-Mary uantum attack against some i Séminaire C2

18/20

One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G2 6 0
10 10 10

. i o) 0 1) (0 1) < 1> ((1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;

@ the two mixed-input products are # 0 for G,

A. Pellet-Mary uantum attack against some i Séminaire C2

18/20

One example of C; and G

a 1 o) 0 =Vx, G(x)=0
G G2 6 0
10 10 10

. i o) 0 1) (0 1) < 1> <(1)> — x, Go(x) =0
Go) GO G

[+ C1 = C2

@ the two mixed-input products are 0 for (;
@ the two mixed-input products are # 0 for G,

We can distinguish O(C;) from O(()

A. Pellet-Mary uantum attack against some i Séminaire C2 18/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

A. Pellet-Mary Quantum attack against some iO

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?
@ Previous schemes prevent mixed-input attack using the randomization

phase

» difficult to get a security proof

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?
@ Previous schemes prevent mixed-input attack using the randomization

phase

» difficult to get a security proof

@ New schemes use the mmap

> easy to get a proof (in idealized model)

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?
@ Previous schemes prevent mixed-input attack using the randomization

phase

» difficult to get a security proof
@ New schemes use the mmap
> easy to get a proof (in idealized model)

@ GGH13 mmap is not ideal

» easier for an attacker to exploit its weakness

A. Pellet-Mary Quantum attack against some iO Séminaire C2 19/20

Conclusion (2/2)

Remarks

o Quantum poly time or classical 20V time

A. Pellet-Mary Quantum attack against some iO

Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time

@ Double mixed input attacks can be extended to circuit obfuscators

A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

i0 (using Branching program obfuscators Circuit
GGH13) obfuscators
. [AGIS14, MSVJ\r/14] . (Zim15, ABI15]
Attacks [GGH*13b] [BR14] [PST14, BGK*14] [[GMM*16]) ™ - o
[BMSZ16]
[MSZ16] v Y
[CGH17]* v
[CHKL18] v v v Y
This talk? v v v

* for input-partitionable branching programs

t for specific choices of parameters

A. Pellet-Mary

Quantum attack against some iO

¥ in the quantum setting

Séminaire C2 20/20

Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

Open problems
@ Quantum attack against [GGHT13b]

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

Open problems
@ Quantum attack against [GGHT13b]

@ Obfuscation for evasive functions

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

Conclusion (2/2)

Remarks
o Quantum poly time or classical 20V time
@ Double mixed input attacks can be extended to circuit obfuscators

@ [GGHT13b]: only BP/circuit obfuscator currently standing in quantum

Open problems
@ Quantum attack against [GGHT13b]

@ Obfuscation for evasive functions

Questions?

[GGH*13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits, FOCS.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 20/20

References |

@ Benny Applebaum and Zvika Brakerski.

Obfuscating circuits via composite-order graded encoding.
In TCC 2015, pages 528-556, 2015.

@ Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai.

Optimizing obfuscation: Avoiding barrington’s theorem.

In CCS 2014, pages 646—658. ACM, 2014.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im) possibility of obfuscating programs.

In Crypto 2001, pages 1-18. Springer, 2001.

Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.

Protecting obfuscation against algebraic attacks.

In Eurocrypt 2014, pages 221-238, 2014.

Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.

Post-zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.
In Eurocrypt 2016, pages 764-791, 2016.

Zvika Brakerski and Guy N Rothblum.

Obfuscating conjunctions.
Crypto 2014, 2014.

1 T O T N T A 1

Jean-Francois Biasse and Fang Song.

Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary
degree number fields.
In SODA 2016, pages 893—902. Society for Industrial and Applied Mathematics, 2016.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 21/20

References I

]

D W

Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev.

Recovering short generators of principal ideals in cyclotomic rings.
In Eurocrypt 2016, pages 559-585, 2016.

Yilei Chen, Craig Gentry, and Shai Halevi.

Cryptanalyses of candidate branching program obfuscators.
In Eurocrypt 2017, pages 278-307. Springer, 2017.

Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee.

Cryptanalyses of branching program obfuscations over ggh13 multilinear map from the ntru problem.

In Crypto 2018, pages 184-210. Springer, 2018.

Nico Dé&ttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee.

Obfuscation from low noise multilinear maps.
ePrint, Report 2016/599, 2016.

Rex Fernando, Peter Rasmussen, and Amit Sahai.

Preventing CLT attacks on obfuscation with linear overhead.
In Asiacrypt 2017, pages 242-271, 2017.

Sanjam Garg, Craig Gentry, and Shai Halevi.

Candidate multilinear maps from ideal lattices.
In Eurocrypt 2013, pages 1-17. Springer, 2013.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits.
FOCS 2013, 2013.

A. Pellet-Mary Quantum attack against some iO Séminaire C2

22/20

References Il

@ Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark Zhandry.
Secure obfuscation in a weak multilinear map model.
In TCC 2016, pages 241-268, 2016.
@ Eric Miles, Amit Sahai, and Mor Weiss.
Protecting obfuscation against arithmetic attacks.
ePrint, Report 2014/878, 2014.
Eric Miles, Amit Sahai, and Mark Zhandry.

Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13.
In Crypto 2016, pages 629-658, 2016.

Indistinguishability obfuscation from semantically-secure multilinear encodings.
In Crypto 2014, pages 500-517, 2014.

Joe Zimmerman.

@ Rafael Pass, Karn Seth, and Sidharth Telang.

How to obfuscate programs directly.
In Eurocrypt 2015, pages 439-467, 2015.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 23/20

The GGH13 multilinear map

o Define R = Z[X]/(X" + 1) with n = 2k,

A. Pellet-Mary Quantum attack against some iO

The GGH13 multilinear map

o Define R = Z[X]/(X" + 1) with n = 2k,
@ Sample g a “small” element in R.
= the plaintext space is P = R/(g).

A. Pellet-Mary Quantum attack against some iO Séminaire C2

24/20

The GGH13 multilinear map

o Define R = Z[X]/(X" + 1) with n = 2k,
@ Sample g a “small” element in R.
= the plaintext space is P = R/(g).

@ Sample g a “large” integer.
= the encoding space is Ry = R/(qR) = Zq[X]/(X" + 1).

Notation
We write [r]q or [r] the elements in Ry.

A. Pellet-Mary Quantum attack against some iO Séminaire C2

24/20

The GGH13 multilinear map: encodings

e Sample z uniformly in Rj.

e Encoding: An encoding of a at level / is

. {a —|—irg}
z q

where a + rg is a small element in a+ (g).

A. Pellet-Mary Quantum attack against some iO Séminaire C2 25/20

The GGH13 multilinear map: encodings

e Sample z uniformly in Rj.

e Encoding: An encoding of a at level / is

. [a —|—irg]
z q

where a + rg is a small element in a+ (g).

Addition and multiplication

Addition:
[al-l-rlg] N a+ng| a1+az+r’g}
i I e S
z g L % l¢ L z q
Multiplication:
[a1+f1g] [ap + g | . _al'az-f-f/g]
i g | ZH |
z g L & g L 2 q
y
A. Pellet-Mary Quantum attack against some iO Séminaire C2 25/20

The GGH13 multilinear map: zero-test

e Sample hin R of the order of g1/2.

@ Define
Pzt = [Znhg_l]q‘

A. Pellet-Mary Quantum attack against some iO

The GGH13 multilinear map: zero-test

e Sample hin R of the order of g1/2.
@ Define
Pzt = [Zﬁhg_l]q-
Zero-test

To test if u = [c/z"] is an encoding of zero (i.e. ¢ =0 mod g), compute

[u- pztlq = [chg g

This is small iff ¢ is a small multiple of g.

A. Pellet-Mary Quantum attack against some iO Séminaire C2 26/20

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], J

A. Pellet-Mary Quantum attack against some iO

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], J

o Get multiple top-level encoding of zero u; = [cig/z"]q

A. Pellet-Mary Quantum attack against some iO

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], J

o Get multiple top-level encoding of zero u; = [cig/z"]q

o Zero-test them = [ujp,]q = cih

A. Pellet-Mary Quantum attack against some iO

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], J

o Get multiple top-level encoding of zero u; = [cig/z"]q
o Zero-test them = [ujp,]q = cih
@ Recover ideal (h) from the ¢;jh

A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], }

o Get multiple top-level encoding of zero u; = [cig/z"]q

@ Zero-test them = [ujp,]q = cih

@ Recover ideal (h) from the ¢;jh

@ Recover h from (h) (quantum poly time [BS16, CDPR16])

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields, SODA.
[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg], }

o Get multiple top-level encoding of zero u; = [cig/z"]q
Zero-test them = [ujpst]q = cih

Recover ideal (h) from the c;h

Recover h from (h) (quantum poly time [BS16, CDPR16])

Create p}, = [Pgt/h2]q = [22”g_2]q

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

Quantum double-zero-test

Reminder
Zero-test: p,r = [z"hg 1], J

o Get multiple top-level encoding of zero u; = [cig/z"]q
Zero-test them = [ujpst]q = cih

Recover ideal (h) from the c;h

Recover h from (h) (quantum poly time [BS16, CDPR16])

Create p}, = [Pgt/h2]q = [22”g_2]q

[upl]q small < u = [cg?/z*"], for some small ¢

& uis a double zero at level 2k

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number fields, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
A. Pellet-Mary Quantum attack against some iO Séminaire C2 27/20

	Simple obfuscator
	The attack

