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What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13
multilinear map [GGH13a]

I GGH13 is known to be weak in quantum world

I Transform this weakness into concrete attack on obfuscators

I Nothing quantum in this talk

[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal

lattices, Eurocrypt.
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Obfuscation

Obfuscator

An obfuscator O for a class of circuits C is an e�ciently computable
function over C such that

∀C ∈ C, ∀x ,C (x) = O(C )(x)

In this talk, C = polynomial size circuits

Security.

VBB: O(C ) acts as a black box computing C

iO: ∀C1 ≡ C2, i.e. C1(x) = C2(x) ∀x ,

O(C1) 'c O(C2)

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.
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Why is iO interesting?

1 iO achieves �best possible� obfuscation

Proof:

I let O be an iO obfuscator and O ′ be another obfuscator

I for any C ∈ C, O(C ) 'c O(O ′(C ))

I O(O ′(C )) reveals less info than O ′(C )

I O(C ) reveals less info than O ′(C )

2 Many cryptographic constructions from iO: functional encryption,
deniable encryption, NIKZs, oblivious transfer, . . .
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Multilinear maps (mmaps) and iO

Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

Caution

All these candidate multilinear maps su�er from weaknesses
(e.g. encodings of zero, zeroizing attacks,. . . ).
⇒ all current attacks against iO rely on the underlying mmap

In this talk: we exploit known weakness of GGH13 to mount concrete
attacks against some iO using it.
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History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH+13b], �rst candidate

2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with
proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH+13b]

2016: [GMM+16], proof in a weaker idealized model (captures [MSZ16])

2017: [CGH17], attack against [GGH+13b], in input-partitionable case

2017: [FRS17], prevent [CGH17] attack

2018: [CHKL18], attack against all obfuscators, for speci�c choices of
parameters
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State of the art and contribution

This talk‡

[CHKL18]†

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators
Circuit

obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

X X X

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for speci�c choices of parameters
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Outline of the talk

1 Simple obfuscator

2 The attack
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Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1
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Cryptographic multilinear maps

De�nition: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.
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Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3
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Ã1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc( )

Enc( )
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Outline of the talk

1 Simple obfuscator

2 The attack
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GGH13 in a quantum world

Reminder: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a .

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.

With a quantum computer

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2
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Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)
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R−11 R2
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Â4

?

R−14Enc( , 1)
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Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree:

Ã0Enc( , 1)

Ã1,0

Ã1,1

x1

0

Enc( , 1)

Enc( , 1)

Ã2,0

Ã2,1

x2

0

Enc( , 1)

Enc( , 1)

Ã3,0

Ã3,1

x1

1

Enc( , 1)

Enc( , 1)

Ã4Enc( , 1)

Total level: 7 ⇒ cannot zero-test
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Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk
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Ã0Enc( , 1)
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Ã3,0
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Ã3,0
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Attack idea: double mixed input

Reminder

In quantum world, we have

Double-zero-test(Enc(a, 2κ)) = True i� a = 0 mod p2

Ã0Enc( , 1)

Ã1,0

Ã1,1

x1

Enc( , 2)

Enc( , 1)

Ã2,0

Ã2,1

x2

Enc( , 1)

Enc( , 1)

Ã3,0

Ã3,1

x1

Enc( , 1)

Enc( , 2)

Ã4Enc( , 1) ⇒ Level 7

×

Ã0Enc( , 1)

Ã1,0

Ã1,1

x1

Enc( , 2)

Enc( , 1)

Ã2,0

Ã2,1

x2

Enc( , 1)

Enc( , 1)

Ã3,0

Ã3,1

x1

Enc( , 1)

Enc( , 2)

Ã4Enc( , 1) ⇒ Level 5

Product level: 12 = 2κ
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Ã1,1

x1

Enc( , 2)

Enc( , 1)
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iO distinguishing attack

Reminder: iO

∀C1 ≡ C2, O(C1) 'c O(C2)

Objective: Find C1 ≡ C2 s.t. double mixed input product is 0 on C1

and 6= 0 on C2, e.g.

the two mixed-input are 0 mod p for C1

⇒ product is 0 mod p2

the two mixed-input are 6= 0 mod p for C2

⇒ product is 6= 0 mod p2
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One example of C1 and C2

C1:
(
1 0

) (
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C1(x) = 0

C2:
(
1 0

) (
0 1
1 0

) (
1 0
0 1

) (
0 1
1 0

)
(
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

) (
0
1

)

x1 x2 x1

⇒ ∀x , C2(x) = 0

C1 ≡ C2

the two mixed-input products are 0 for C1

the two mixed-input products are 6= 0 for C2

We can distinguish O(C1) from O(C2)
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Conclusion (1/2)

Counter-intuitive remark

This attack works only against the recent schemes
(with stronger security proofs)

Why?

Previous schemes prevent mixed-input attack using the randomization
phase

I di�cult to get a security proof

New schemes use the mmap
I easy to get a proof (in idealized model)

GGH13 mmap is not ideal
I easier for an attacker to exploit its weakness
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Conclusion (2/2)

Remarks

Quantum poly time or classical 2O(
√
n) time

Double mixed input attacks can be extended to circuit obfuscators

[GGH+13b]: only BP/circuit obfuscator currently standing in quantum

Open problems

Quantum attack against [GGH+13b]

Obfuscation for evasive functions

Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate

indistinguishability obfuscation and functional encryption for all circuits, FOCS.
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This talk‡

[CHKL18]†

[CGH17]?

[MSZ16]

Attacks

iO (using

GGH13)

Branching program obfuscators
Circuit

obfuscators

[GGH+13b] [BR14]

[AGIS14, MSW14]

[PST14, BGK+14]

[BMSZ16]

[GMM+16]
[Zim15, AB15]

[DGG+16]

X X X

XXXX

X

XX

? for input-partitionable branching programs ‡ in the quantum setting
† for speci�c choices of parameters
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The GGH13 multilinear map

De�ne R = Z[X ]/(X n + 1) with n = 2k .

Sample g a �small� element in R .
⇒ the plaintext space is P = R/〈g〉.
Sample q a �large� integer.
⇒ the encoding space is Rq = R/(qR) = Zq[X ]/(X n + 1).

Notation

We write [r ]q or [r ] the elements in Rq.
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The GGH13 multilinear map: encodings

Sample z uniformly in Rq.

Encoding: An encoding of a at level i is

u =

[
a+ rg

z i

]
q

where a+ rg is a small element in a+ 〈g〉.

Addition and multiplication

Addition: [
a1 + r1g

z i

]
q

+

[
a2 + r2g

z i

]
q

=

[
a1 + a2 + r ′g

z i

]
q

.

Multiplication:[
a1 + r1g

z i

]
q

·
[
a2 + r2g

z j

]
q

=

[
a1 · a2 + r ′g

z i+j

]
q

.
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The GGH13 multilinear map: zero-test

Sample h in R of the order of q1/2.

De�ne
pzt = [zκhg−1]q.

Zero-test

To test if u = [c/zκ] is an encoding of zero (i.e. c = 0 mod g), compute

[u · pzt ]q = [chg−1]q.

This is small i� c is a small multiple of g .
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Quantum double-zero-test

Reminder

Zero-test: pzt = [zκhg−1]q.

Get multiple top-level encoding of zero ui = [cig/z
κ]q

Zero-test them ⇒ [uipzt ]q = cih

Recover ideal 〈h〉 from the cih

Recover h from 〈h〉 (quantum poly time [BS16, CDPR16])

Create p′zt = [p2zt/h
2]q = [z2κg−2]q

[up′zt ]q small ⇔ u = [cg2/z2κ]q for some small c

⇔ u is a double zero at level 2κ

[BS16] J.-F. Biasse and F. Song. E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds, SODA.

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of

Principal Ideals in Cyclotomic Rings, Eurocrypt.
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