# Quantum attack against some candidate obfuscators based on GGH13 

Alice Pellet-Mary<br>LIP, ENS de Lyon<br>Séminaire C2<br>November 16, 2018



## What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13 multilinear map [GGH13a]
[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

## What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13 multilinear map [GGH13a]

- GGH13 is known to be weak in quantum world
[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.


## What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13 multilinear map [GGH13a]

- GGH13 is known to be weak in quantum world
- Transform this weakness into concrete attack on obfuscators
[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.


## What is this talk about

Quantum attack against some candidate obfuscators built upon the GGH13 multilinear map [GGH13a]

- GGH13 is known to be weak in quantum world
- Transform this weakness into concrete attack on obfuscators
- Nothing quantum in this talk
[GGH13a] S. Garg, C. Gentry and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.


## Obfuscation

## Obfuscator

An obfuscator $O$ for a class of circuits $\mathcal{C}$ is an efficiently computable function over $\mathcal{C}$ such that

$$
\forall C \in \mathcal{C}, \forall x, C(x)=O(C)(x)
$$

In this talk, $\mathcal{C}=$ polynomial size circuits

## Obfuscation

## Obfuscator

An obfuscator $O$ for a class of circuits $\mathcal{C}$ is an efficiently computable function over $\mathcal{C}$ such that

$$
\forall C \in \mathcal{C}, \forall x, C(x)=O(C)(x)
$$

In this talk, $\mathcal{C}=$ polynomial size circuits

## Security.

- VBB: $O(C)$ acts as a black box computing $C$


## Obfuscation

## Obfuscator

An obfuscator $O$ for a class of circuits $\mathcal{C}$ is an efficiently computable function over $\mathcal{C}$ such that

$$
\forall C \in \mathcal{C}, \forall x, C(x)=O(C)(x)
$$

In this talk, $\mathcal{C}=$ polynomial size circuits

## Security.

- VBB: $O(C)$ acts as a black box computing $C$ (impossible, $\left[\mathrm{BGI}^{+} 01\right]$ )
[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang. On the (im) possibility of obfuscating programs, Crypto.


## Obfuscation

## Obfuscator

An obfuscator $O$ for a class of circuits $\mathcal{C}$ is an efficiently computable function over $\mathcal{C}$ such that

$$
\forall C \in \mathcal{C}, \forall x, C(x)=O(C)(x)
$$

In this talk, $\mathcal{C}=$ polynomial size circuits

## Security.

- $\forall B B: O(C)$ acts as a black box computing $C$ (impossible, $\left[\mathrm{BGI}^{+} 01\right]$ )
- iO: $\forall C_{1} \equiv C_{2}$, i.e. $C_{1}(x)=C_{2}(x) \forall x$,

$$
O\left(C_{1}\right) \simeq_{c} O\left(C_{2}\right)
$$

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang. On the (im) possibility of obfuscating programs, Crypto.

## Why is iO interesting?

1 iO achieves "best possible" obfuscation

## Why is iO interesting?

1 iO achieves "best possible" obfuscation

## Proof:

- let $O$ be an iO obfuscator and $O^{\prime}$ be another obfuscator


## Why is iO interesting?

1 iO achieves "best possible" obfuscation

## Proof:

- let $O$ be an iO obfuscator and $O^{\prime}$ be another obfuscator
- for any $C \in \mathcal{C}, O(C) \simeq{ }_{c} O\left(O^{\prime}(C)\right)$


## Why is iO interesting?

1 iO achieves "best possible" obfuscation

## Proof:

- let $O$ be an iO obfuscator and $O^{\prime}$ be another obfuscator
- for any $C \in \mathcal{C}, O(C) \simeq{ }_{c} O\left(O^{\prime}(C)\right)$
- $O\left(O^{\prime}(C)\right)$ reveals less info than $O^{\prime}(C)$


## Why is iO interesting?

1 iO achieves "best possible" obfuscation

## Proof:

- let $O$ be an iO obfuscator and $O^{\prime}$ be another obfuscator
- for any $C \in \mathcal{C}, O(C) \simeq{ }_{c} O\left(O^{\prime}(C)\right)$
- $O\left(O^{\prime}(C)\right)$ reveals less info than $O^{\prime}(C)$
- $O(C)$ reveals less info than $O^{\prime}(C)$


## Why is iO interesting?

1 iO achieves "best possible" obfuscation Proof:

- let $O$ be an iO obfuscator and $O^{\prime}$ be another obfuscator
- for any $C \in \mathcal{C}, O(C) \simeq{ }_{c} O\left(O^{\prime}(C)\right)$
- $O\left(O^{\prime}(C)\right)$ reveals less info than $O^{\prime}(C)$
- $O(C)$ reveals less info than $O^{\prime}(C)$

2 Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

## Multilinear maps (mmaps) and iO

## Observation <br> Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

## Multilinear maps (mmaps) and iO

## Observation <br> Almost all iO constructions for all circuits rely on multilinear maps (mmaps)

Three main candidate multilinear maps: GGH13, CLT13, GGH15

## Caution

All these candidate multilinear maps suffer from weaknesses (e.g. encodings of zero, zeroizing attacks,... ). $\Rightarrow$ all current attacks against iO rely on the underlying mmap

## Multilinear maps (mmaps) and iO

## Observation

Almost all iO constructions for all circuits rely on multilinear maps (mmaps)
Three main candidate multilinear maps: GGH13, CLT13, GGH15

## Caution

All these candidate multilinear maps suffer from weaknesses (e.g. encodings of zero, zeroizing attacks,...).
$\Rightarrow$ all current attacks against iO rely on the underlying mmap
In this talk: we exploit known weakness of GGH13 to mount concrete attacks against some iO using it.

## History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

## History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH ${ }^{+}$13b], first candidate
2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with proofs in idealized models (the mmap is supposed to be somehow ideal)

## History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH ${ }^{+}$13b], first candidate
2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH ${ }^{+}$13b]
2016: [GMM ${ }^{+}$16], proof in a weaker idealized model (captures [MSZ16])

## History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:

2013: [GGH ${ }^{+}$13b], first candidate
2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with proofs in idealized models (the mmap is supposed to be somehow ideal) 2016: [MSZ16], attack against all candidates above except [GGH+ ${ }^{+}$13b]

2016: $[G M M+16]$, proof in a weaker idealized model (captures [MSZ16])
2017: [CGH17], attack against [GGH ${ }^{+}$13b], in input-partitionable case
2017: [FRS17], prevent [CGH17] attack

## History (branching program obfuscators based on GGH13)

Some candidate iO for all circuits and attacks:
2013: [GGH ${ }^{+}$13b], first candidate
2014-2016: [AGIS14, BGK+14, BR14, MSW14, PST14, BMSZ16], with proofs in idealized models (the mmap is supposed to be somehow ideal)

2016: [MSZ16], attack against all candidates above except [GGH ${ }^{+}$13b]
2016: $[G M M+16]$, proof in a weaker idealized model (captures [MSZ16])
2017: [CGH17], attack against [GGH ${ }^{+}$13b], in input-partitionable case
2017: [FRS17], prevent [CGH17] attack
2018: [CHKL18], attack against all obfuscators, for specific choices of parameters

## State of the art and contribution

| iO (using GGH13) <br> Attacks | Branching program obfuscators |  |  |  | Circuit obfuscators [Zim15, AB15] [DGG ${ }^{+} 16$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | [GGH $\left.{ }^{+} 13 \mathrm{~b}\right]$ | [BR14] | $\begin{gathered} {[\text { AGIS14, MSW14] }} \\ {\left[\text { PST14, BGK }^{+} 14\right]} \\ {[\text { BMSZ16] }} \end{gathered}$ | $\left[\mathrm{GMM}^{+} 16\right]$ |  |
| [MSZ16] |  | $\checkmark$ | $\checkmark$ |  |  |
| [CGH17]* | $\checkmark$ |  |  |  |  |
| $[\mathrm{CHKL18}]^{\dagger}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| This talk ${ }^{\ddagger}$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |

* for input-partitionable branching programs $\quad \ddagger$ in the quantum setting
$\dagger$ for specific choices of parameters


## State of the art and contribution

| iO (using GGH13) <br> Attacks | Branching program obfuscators |  |  |  | Circuit obfuscators [Zim15, AB15] [DGG ${ }^{+} 16$ ] |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | [GGH $\left.{ }^{+} 13 \mathrm{~b}\right]$ | [BR14] | $\begin{gathered} {[\text { AGIS14, MSW14] }} \\ {\left[\text { PST14, BGK }^{+} 14\right]} \\ {[\text { BMSZ16] }} \end{gathered}$ | $\left[\mathrm{GMM}^{+} 16\right]$ |  |
| [MSZ16] |  | $\checkmark$ | $\checkmark$ |  |  |
| [CGH17]* | $\checkmark$ |  |  |  |  |
| $[\mathrm{CHKL18}]^{\dagger}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| This talk ${ }^{\ddagger}$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |

* for input-partitionable branching programs $\quad \ddagger$ in the quantum setting
$\dagger$ for specific choices of parameters


## Outline of the talk

(1) Simple obfuscator
A. Pellet-Mary

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=0 \quad 1 \quad 1
$$

$\begin{array}{llllllll} & A_{0} & A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} \\ & A_{1,0} & A_{2,0} & A_{3,0} & A_{4,0} & A_{5,0} & A_{6,0} & A_{7}\end{array}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=0 \quad 1 \quad 1
$$

$\begin{array}{llllllll} & A_{0} & A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} \\ & A_{1,0} & A_{2,0} & A_{3,0} & A_{4,0} & A_{5,0} & A_{6,0} & A_{7}\end{array}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$A_{0}$ $\begin{array}{lllll}A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} \\ A_{1,0} & A_{2,0} & A_{3,0} & A_{6,0} & A_{5,0} \\ A_{6,0} & A_{7}\end{array}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$\begin{aligned} & A_{0}\end{aligned}{ }^{A_{1,1}} \times \begin{array}{llllll}A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} & A_{7} \\ A_{1,0}\end{array}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
& \uparrow
\end{array}
$$

$A_{0} \times{ }_{1,1} \times \begin{aligned} & A_{2,1} \\ & A_{1,0}\end{aligned} \times \begin{array}{llll}A_{3,1} \\ A_{2,0}\end{array} \begin{array}{lll}A_{4,1} & A_{5,1} & A_{6,1} \\ A_{3,0} & A_{4,0} & A_{5,0} \\ A_{6,0}\end{array}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$A_{0} \times{ }_{A_{1,1}} \times{ }_{A_{1,0}}^{A_{2,1}} \times{ }_{A_{2,0}}^{A_{3,1}} \times \begin{array}{llll}A_{4,1} & A_{5,1} & A_{6,1} \\ A_{3,0}\end{array} A_{4,0}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned} A_{6,1} \quad A_{6,0} \quad A_{7}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
& \uparrow &
\end{array}
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \quad A_{7}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=0 \quad 1 \quad 1
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \times A_{7}$

## Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- $2 \ell$ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$ ),
- two vectors $A_{0}$ and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where $r$ is the size of the input).

| $i$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{inp}(i)$ | 1 | 1 | 2 | 1 | 3 | 2 |

$$
x=0 \quad 1 \quad 1
$$

$A_{0} \times \begin{aligned} & A_{1,1} \\ & A_{1,0}\end{aligned}{ }_{A_{2,1}}^{A_{2,0}} \times \begin{aligned} & A_{3,1} \\ & A_{3,0}\end{aligned}{ }_{A_{4,1}}^{A_{4,0}} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \times{ }_{A_{7}}=0 \rightarrow 0$

## Cryptographic multilinear maps

Definition: $\kappa$-multilinear map
Different levels of encodings, from 1 to $\kappa$.
Denote by $\operatorname{Enc}(a, i)$ a level- $i$ encoding of the message a.
Addition: $\operatorname{Add}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, i\right)\right)=\operatorname{Enc}\left(a_{1}+a_{2}, i\right)$.
Multiplication: $\operatorname{Mult}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, j\right)\right)=\operatorname{Enc}\left(a_{1} \cdot a_{2}, i+j\right)$.
Zero-test: Zero-test(Enc $(a, \kappa))=$ True iff $a=0$.

## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$A_{3,1}$
$\underline{A_{0}}$

$$
A_{1,0}
$$

$$
A_{2,0}
$$

$A_{3,0}$

## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors



## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$$
\begin{array}{lll|l|l|l|l|} 
& \begin{array}{ll|l|l|l|l|}
\hline R_{1}^{-1} & A_{1,1} & R_{2} & R_{2}^{-1} & A_{2,1} & R_{3} \\
A_{0} \\
\hline R_{1} & & & \begin{array}{ll}
R_{3}^{-1} & A_{3,1} \\
\hline
\end{array} & R_{4} \\
\hline & & & \\
& R_{1}^{-1} & A_{1,0} & R_{2} & R_{2}^{-1} & A_{2,0} \\
\hline
\end{array} & R_{3} & R_{3}^{-1} & A_{3,0} & R_{4} \\
\hline
\end{array}
$$

## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$$
\alpha_{1,1} \times \boxed{A_{1,1}} \quad \alpha_{2,1} \times \boxed{A_{2,1}} \quad \alpha_{3,1} \times A_{3,1}
$$

$$
\begin{array}{r}
\frac{A_{0}}{} \\
\quad \alpha_{1,0} \times A_{1,0} \\
\alpha_{2,0} \times A_{2,0}
\end{array} \alpha_{3,0} \times A_{3,0}
$$

## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors


$$
\widetilde{A_{1,1}}
$$

$$
\widetilde{A_{2,1}}
$$



$$
\widetilde{A_{1,0}}
$$

$$
\widetilde{A_{2,0}}
$$

$\square$

## Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors
$\operatorname{Enc}\left(\widetilde{A_{0}}\right)$

$\operatorname{Enc}\left(\widetilde{A_{1,0}}\right)$
$\operatorname{Enc}\left(\widetilde{A_{2,0}}\right)$
$\operatorname{Enc}\left(\widetilde{A_{3,0}}\right)$


## Outline of the talk

(1) Simple obfuscator
(2) The attack

## GGH13 in a quantum world

## Reminder: $\kappa$-multilinear map

Different levels of encodings, from 1 to $\kappa$.
Denote by $\operatorname{Enc}(a, i)$ a level- $i$ encoding of the message $a$.
Addition: $\operatorname{Add}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, i\right)\right)=\operatorname{Enc}\left(a_{1}+a_{2}, i\right)$.
Multiplication: $\operatorname{Mult}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, j\right)\right)=\operatorname{Enc}\left(a_{1} \cdot a_{2}, i+j\right)$.
Zero-test: Zero-test(Enc $(a, \kappa))=$ True iff $a=0$.

## GGH13 in a quantum world

## The GGH13 map

Different levels of encodings, from 1 to $\kappa$.
Denote by $\operatorname{Enc}(a, i)$ a level- $i$ encoding of the message $a \in \mathbb{Z} / p \mathbb{Z}$.
Addition: $\operatorname{Add}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, i\right)\right)=\operatorname{Enc}\left(a_{1}+a_{2}, i\right)$.
Multiplication: $\operatorname{Mult}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, j\right)\right)=\operatorname{Enc}\left(a_{1} \cdot a_{2}, i+j\right)$.
Zero-test: Zero-test $(\operatorname{Enc}(a, \kappa))=$ True iff $a=0 \bmod p$.

## GGH13 in a quantum world

## The GGH13 map

Different levels of encodings, from 1 to $\kappa$.
Denote by $\operatorname{Enc}(a, i)$ a level- $i$ encoding of the message $a \in \mathbb{Z} / p \mathbb{Z}$.
Addition: $\operatorname{Add}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, i\right)\right)=\operatorname{Enc}\left(a_{1}+a_{2}, i\right)$.
Multiplication: $\operatorname{Mult}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, j\right)\right)=\operatorname{Enc}\left(a_{1} \cdot a_{2}, i+j\right)$.
Zero-test: Zero-test $(\operatorname{Enc}(a, \kappa))=$ True iff $a=0 \bmod p$.

With a quantum computer
Double-zero-test $(\operatorname{Enc}(a, 2 \kappa))=$ True iff $a=0 \bmod p^{2}$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

| $\widehat{A_{0}}$ | $\widehat{\widehat{A_{1,1}}}$ | $\widehat{A_{2,1}}$ |
| :---: | :---: | :---: |
|  |  | $\widehat{A_{3,1}}$ |
|  | $\widehat{A_{1,0}}$ | $\widehat{A_{2,0}}$ |
| $x_{1}$ | $x_{2}$ | $\widehat{A_{3,0}}$ |
|  |  | $x_{1}$ |

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)
$\widehat{A_{1,1}}$

$\widehat{A_{1,0}}$
$x_{1}$
1
$\widehat{A_{2,0}}$
$x_{2}$
1

$$
\begin{gathered}
\widehat{A_{3,0}} \\
x_{1} \\
1
\end{gathered}
$$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
$x_{1}$
1
$\widehat{A_{2,0}}$
$x_{2}$
0

$$
\begin{gathered}
\widehat{A_{3,0}} \\
x_{1} \\
1
\end{gathered}
$$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{2,1}}$
$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
$x_{1}$
0
$\widehat{A_{2,0}}$
$x_{2}$
1
$\widehat{A_{3,0}}$
$X_{1}$
0


## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)
$\widehat{A_{2,1}}$
$\widehat{A_{3,1}}$
$\widehat{A_{0}}$

$x_{1}$
0


0

$X_{1}$
0

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$$
\widehat{A_{1,1}}
$$


$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
$x_{1}$
0
$\widehat{A_{2,0}}$
$x_{2}$
$X_{1}$
1

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)
$\widetilde{A_{2,1}}$
$\widetilde{A_{3,1}}$
$\widetilde{A_{0}}$

$(1)$
$\mid \widetilde{A_{4}}$
$\widetilde{A_{1,0}}$
$x_{1}$
0
$\widetilde{A_{2,0}}$
$x_{2}$
0

$$
\begin{gathered}
\widetilde{A_{3,0}} \\
x_{1} \\
1
\end{gathered}
$$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$x_{1}$
0

$x_{2}$
0

$X_{1}$
1



## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$$
\begin{aligned}
& \xrightarrow{A_{0}} R_{1} \\
& \begin{array}{|l|l|l|}
\hline R_{1}^{-1} & A_{1,0} & R_{2} \\
\hline
\end{array} \\
& x_{1} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& x_{2} \\
& 0 \\
& x_{1} \\
& 1
\end{aligned}
$$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$$
\alpha_{1,1} \times \boxed{A_{1,1}} \quad \alpha_{2,1} \times \boxed{A_{2,1}} \quad \alpha_{3,1} \times A_{3,1}
$$

$A_{0}$

$$
\begin{array}{rcc}
\alpha_{1,0} \times A_{1,0} & \alpha_{2,0} \times & A_{2,0}
\end{array} \alpha_{3,0} \times \begin{array}{|cc}
A_{3,0} \\
x_{1} & x_{2}
\end{array}
$$

## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)
$\widetilde{A_{1,1}} \quad \widetilde{A_{2,1}} \quad \widetilde{A_{3,1}}$
$\widetilde{A_{1,0}}$
$x_{1}$
0
$\widetilde{A_{2,0}}$
$x_{2}$
$X_{1}$
1


## Mixed-input attack

## Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$$
\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{3,1}}, 1}\right)
$$

## $\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk


## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk
- Using the mmap $\Rightarrow$ straddling set system


## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk
- Using the mmap $\Rightarrow$ straddling set system

Mmap degree: $\kappa=5$

$$
\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 1\right)
$$

$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk
- Using the mmap $\Rightarrow$ straddling set system

Mmap degree: $\kappa=6$

$$
\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right)
$$

$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk
- Using the mmap $\Rightarrow$ straddling set system

Mmap degree: $\kappa=6$
$\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right)$
$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

## Preventing mixed-input attacks

- In the randomization phase $\Rightarrow$ not in this talk
- Using the mmap $\Rightarrow$ straddling set system

Mmap degree: $\kappa=6$
$\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right)$
$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

## Attack idea: double mixed input

## Reminder

In quantum world, we have

$$
\text { Double-zero-test }(\operatorname{Enc}(a, 2 \kappa))=\text { True iff } a=0 \bmod p^{2}
$$

## Attack idea: double mixed input

## Reminder

In quantum world, we have

## Double-zero-test $(\operatorname{Enc}(a, 2 \kappa))=$ True iff $a=0 \bmod p^{2}$

$$
\begin{array}{cccc}
\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right) & \operatorname{Enc}\left(\widetilde{\left.\widetilde{A_{1,1}}, 1\right)} \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right)\right. & \operatorname{Enc}\left(\widetilde{\left.\widetilde{A_{3,1}}, 2\right)}\right. \\
& \operatorname{Enc}\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\widetilde{A_{2,0}}, 1\right) & \operatorname{Enc}\left(\widetilde{A_{3,0}}, 1\right) \\
x_{1} & x_{2} & x_{1}
\end{array}
$$

## Attack idea: double mixed input

## Reminder

In quantum world, we have

## Double-zero-test $(\operatorname{Enc}(a, 2 \kappa))=$ True iff $a=0 \bmod p^{2}$

$$
\begin{aligned}
& \operatorname{Enc}\left(\widetilde{\widetilde{A_{1,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \operatorname{Enc}\left(\widetilde{A_{0}}, 1\right) \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\begin{array}{|c}
\widetilde{A_{2,0}} \\
, 1) \\
x_{1}
\end{array}\right. & \operatorname{Enc}\left(\widetilde{\widetilde{A_{3,0}}}, 1\right) \\
x_{2} & x_{1}
\end{array}\right. \\
& \operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{2,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \operatorname{Enc}\left(\widetilde{A_{0}}, 1\right) \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\begin{array}{|c}
\left.\widetilde{A_{2,0}}, 1\right) \\
x_{1}
\end{array}\right. & \operatorname{Enc}\left(\begin{array}{|c}
\widetilde{A_{3,0}} \\
\end{array}\right) \\
x_{2} & x_{1}
\end{array}\right.
\end{aligned}
$$

## Attack idea: double mixed input

## Reminder

In quantum world, we have

## Double-zero-test $(\operatorname{Enc}(a, 2 \kappa))=$ True iff $a=0 \bmod p^{2}$

$$
\begin{aligned}
& \operatorname{Enc}\left(\widetilde{\widetilde{A_{1,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \operatorname{Enc}\left(\widetilde{A_{0}}, 1\right) \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\begin{array}{|c}
\left.\widetilde{A_{2,0}}, 1\right) \\
x_{1}
\end{array}\right. & \operatorname{Enc}\left(\widetilde{\widetilde{A_{3,0}}}, 1\right) \\
x_{2} & x_{1}
\end{array}\right. \\
& \operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{2,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}\right.
\end{array}, 2\right) \quad \operatorname{Enc}\left(\underset{A_{2,0}}{\mid\left(\widetilde{A_{2}}\right.}, 1\right) \quad \operatorname{Enc}\left(\underset{A_{3,0}}{\left(\widetilde{A_{1}}, 1\right)}\right.
\end{aligned}
$$

## Attack idea: double mixed input

## Reminder

In quantum world, we have

## Double-zero-test $(\operatorname{Enc}(a, 2 \kappa))=$ True iff $a=0 \bmod p^{2}$

$$
\begin{aligned}
& \operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \operatorname{Enc}\left(\widetilde{A_{0}}, 1\right) \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\underset{A_{2,0}}{\left(\widetilde{A_{2}}\right.}, 1\right) & \operatorname{Enc}\left(\underset{A_{3,0}}{\widetilde{A_{3}}}, 1\right) \\
x_{1} & x_{2} & x_{1}
\end{array}\right. \\
& \operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right) \\
& \mid \operatorname{Enc}\left(\widetilde{A_{4}}, 1\right) \Rightarrow \text { Level } 5 \\
& \operatorname{Enc}\left(\begin{array}{ccc}
\left(\widetilde{A_{1,0}}, 2\right) & \operatorname{Enc}\left(\underset{A_{2,0}}{\mid c}, 1\right) & \operatorname{Enc}\left(\underset{A_{3,0}}{\left(\widetilde{A_{1}}\right.}, 1\right) \\
x_{1} & x_{2} & x_{1}
\end{array}\right. \\
& \text { Product level: } 12=2 \kappa
\end{aligned}
$$

iO distinguishing attack

Reminder: iO

$$
\forall C_{1} \equiv C_{2}, O\left(C_{1}\right) \simeq_{c} O\left(C_{2}\right)
$$

## iO distinguishing attack

## Reminder: iO

$$
\forall C_{1} \equiv C_{2}, O\left(C_{1}\right) \simeq_{c} O\left(C_{2}\right)
$$

Objective: Find $C_{1} \equiv C_{2}$ s.t. double mixed input product is 0 on $C_{1}$ and $\neq 0$ on $C_{2}$, e.g.

- the two mixed-input are $0 \bmod p$ for $C_{1}$
$\Rightarrow$ product is $0 \bmod p^{2}$
- the two mixed-input are $\neq 0 \bmod p$ for $C_{2}$
$\Rightarrow$ product is $\neq 0 \bmod p^{2}$


## One example of $C_{1}$ and $C_{2}$



## One example of $C_{1}$ and $C_{2}$

$C_{1}$ :
(1 0)

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\binom{0}{1} \quad \Rightarrow \forall x, C_{1}(x)=0
$$

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{1}
\end{array}
$$

$C_{2}$ :

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\binom{0}{1} \Rightarrow \forall x, C_{2}(x)=0
$$

## One example of $C_{1}$ and $C_{2}$

$C_{1}: \quad\left(\begin{array}{ll}1 & 0\end{array}\right)$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\binom{0}{1} \quad \Rightarrow \forall x, C_{1}(x)=0
$$

$$
\begin{array}{lll}
x_{1} & x_{2} & x_{1}
\end{array}
$$

$C_{2}$ :

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\begin{array}{ccc}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
x_{1} & x_{2} & x_{1}
\end{array}
$$

$$
\binom{0}{1} \quad \Rightarrow \forall x, C_{2}(x)=0
$$

## One example of $C_{1}$ and $C_{2}$

$C_{1}: \quad\left(\begin{array}{ll}1 & 0\end{array}\right)$
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

| $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ |
| :---: | :---: | :---: |
| $x_{1}$ | $x_{2}$ | $x_{1}$ |

$\binom{0}{1} \quad \Rightarrow \forall x, C_{1}(x)=0$
$C_{2}$ :

$$
\begin{array}{lll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array} \quad\binom{0}{1} \quad \Rightarrow \forall x, C_{2}(x)=0
$$

## One example of $C_{1}$ and $C_{2}$



- $C_{1} \equiv C_{2}$
- the two mixed-input products are 0 for $C_{1}$
- the two mixed-input products are $\neq 0$ for $C_{2}$


## One example of $C_{1}$ and $C_{2}$

$$
\left.\begin{array}{lcc}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
x_{1} & x_{2} & x_{1} \\
1
\end{array}\right) \quad \Rightarrow \forall x, C_{1}(x)=0
$$

- $C_{1} \equiv C_{2}$
- the two mixed-input products are 0 for $C_{1}$
- the two mixed-input products are $\neq 0$ for $C_{2}$

$$
\text { We can distinguish } O\left(C_{1}\right) \text { from } O\left(C_{2}\right)
$$

## Conclusion (1/2)

## Counter-intuitive remark

This attack works only against the recent schemes (with stronger security proofs)

## Conclusion (1/2)

## Counter-intuitive remark

This attack works only against the recent schemes (with stronger security proofs)

## Why?

- Previous schemes prevent mixed-input attack using the randomization phase
- difficult to get a security proof


## Conclusion (1/2)

## Counter-intuitive remark

This attack works only against the recent schemes (with stronger security proofs)

## Why?

- Previous schemes prevent mixed-input attack using the randomization phase
- difficult to get a security proof
- New schemes use the mmap
- easy to get a proof (in idealized model)


## Conclusion (1/2)

## Counter-intuitive remark

This attack works only against the recent schemes (with stronger security proofs)

## Why?

- Previous schemes prevent mixed-input attack using the randomization phase
- difficult to get a security proof
- New schemes use the mmap
- easy to get a proof (in idealized model)
- GGH13 mmap is not ideal
- easier for an attacker to exploit its weakness


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2^{O(\sqrt{n})}$ time


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2^{O(\sqrt{n})}$ time
- Double mixed input attacks can be extended to circuit obfuscators


## Conclusion (2/2)

| iO (using GGH13) <br> Attacks | Branching program obfuscators |  |  |  | Circuit obfuscators [Zim15, AB15] [DGG $\left.{ }^{+} 16\right]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | GGH $\left.{ }^{+} 13 \mathrm{~b}\right]$ | [BR14] | $\left[\begin{array}{c} {[\text { AGIS14, MSW14] }} \\ {\left[\text { PST14, BGK }{ }^{+}\right. \text {14] }} \\ {[\text { BMSZ16] }} \end{array}\right.$ | $\left[\mathrm{GMM}^{+} 16\right]$ |  |
| [MSZ16] |  | $\checkmark$ | $\checkmark$ |  |  |
| [CGH17] ${ }^{\text {* }}$ | $\checkmark$ |  |  |  |  |
| $\left[^{\text {CHKL18] }}{ }^{\dagger}\right.$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |
| This talk ${ }^{\ddagger}$ |  |  | $\checkmark$ | $\checkmark$ | $\checkmark$ |

* for input-partitionable branching programs
${ }^{\dagger}$ for specific choices of parameters
$\ddagger$ in the quantum setting


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2 O(\sqrt{n})$ time
- Double mixed input attacks can be extended to circuit obfuscators
- [GGH+13b]: only BP/circuit obfuscator currently standing in quantum
[GGH ${ }^{+}$13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits, FOCS.


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2^{O(\sqrt{n})}$ time
- Double mixed input attacks can be extended to circuit obfuscators
- [GGH+13b]: only BP/circuit obfuscator currently standing in quantum


## Open problems

- Quantum attack against [GGH+13b]
[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits, FOCS.


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2^{O(\sqrt{n})}$ time
- Double mixed input attacks can be extended to circuit obfuscators
- [GGH+13b]: only BP/circuit obfuscator currently standing in quantum


## Open problems

- Quantum attack against [GGH ${ }^{+} 13 \mathrm{~b}$ ]
- Obfuscation for evasive functions
[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits, FOCS.


## Conclusion (2/2)

## Remarks

- Quantum poly time or classical $2^{O(\sqrt{n})}$ time
- Double mixed input attacks can be extended to circuit obfuscators
- [GGH+13b]: only BP/circuit obfuscator currently standing in quantum


## Open problems

- Quantum attack against [GGH ${ }^{+} 13 \mathrm{~b}$ ]
- Obfuscation for evasive functions


## Questions?

[GGH+13b] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits, FOCS.

## References

Benny Applebaum and Zvika Brakerski.
Obfuscating circuits via composite-order graded encoding.
In TCC 2015, pages 528-556, 2015.
Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai.
Optimizing obfuscation: Avoiding barrington's theorem.
In CCS 2014, pages 646-658. ACM, 2014.
Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.
On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1-18. Springer, 2001.
Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai.
Protecting obfuscation against algebraic attacks.
In Eurocrypt 2014, pages 221-238, 2014.
Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry.
Post-zeroizing obfuscation: New mathematical tools, and the case of evasive circuits.
In Eurocrypt 2016, pages 764-791, 2016.
Zvika Brakerski and Guy N Rothblum.
Obfuscating conjunctions.
Crypto 2014, 2014.
Jean-François Biasse and Fang Song.
Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields.
In SODA 2016, pages 893-902. Society for Industrial and Applied Mathematics, 2016.

## References II

园
Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev.
Recovering short generators of principal ideals in cyclotomic rings.
In Eurocrypt 2016, pages 559-585, 2016.
Yilei Chen, Craig Gentry, and Shai Halevi.
Cryptanalyses of candidate branching program obfuscators.
In Eurocrypt 2017, pages 278-307. Springer, 2017.
Jung Hee Cheon, Minki Hhan, Jiseung Kim, and Changmin Lee.
Cryptanalyses of branching program obfuscations over ggh13 multilinear map from the ntru problem. In Crypto 2018, pages 184-210. Springer, 2018.

Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Pratyay Mukherjee.
Obfuscation from low noise multilinear maps.
ePrint, Report 2016/599, 2016.
Rex Fernando, Peter Rasmussen, and Amit Sahai.
Preventing CLT attacks on obfuscation with linear overhead.
In Asiacrypt 2017, pages 242-271, 2017.
Sanjam Garg, Craig Gentry, and Shai Halevi.
Candidate multilinear maps from ideal lattices.
In Eurocrypt 2013, pages 1-17. Springer, 2013.
Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits.
FOCS 2013, 2013.

## References III

Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and Mark Zhandry. Secure obfuscation in a weak multilinear map model.
In TCC 2016, pages 241-268, 2016.
Eric Miles, Amit Sahai, and Mor Weiss.
Protecting obfuscation against arithmetic attacks.
ePrint, Report 2014/878, 2014.
Eric Miles, Amit Sahai, and Mark Zhandry.
Annihilation attacks for multilinear maps: Cryptanalysis of indistinguishability obfuscation over GGH13. In Crypto 2016, pages 629-658, 2016.

Rafael Pass, Karn Seth, and Sidharth Telang.
Indistinguishability obfuscation from semantically-secure multilinear encodings.
In Crypto 2014, pages 500-517, 2014.
Joe Zimmerman.
How to obfuscate programs directly.
In Eurocrypt 2015, pages 439-467, 2015.

## The GGH13 multilinear map

- Define $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ with $n=2^{k}$.


## The GGH13 multilinear map

- Define $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ with $n=2^{k}$.
- Sample $g$ a "small" element in $R$.
$\Rightarrow$ the plaintext space is $\mathcal{P}=R /\langle g\rangle$.


## The GGH13 multilinear map

- Define $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ with $n=2^{k}$.
- Sample $g$ a "small" element in $R$.
$\Rightarrow$ the plaintext space is $\mathcal{P}=R /\langle g\rangle$.
- Sample q a "large" integer.
$\Rightarrow$ the encoding space is $R_{q}=R /(q R)=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.


## Notation

We write $[r]_{q}$ or $[r]$ the elements in $R_{q}$.

## The GGH13 multilinear map: encodings

- Sample z uniformly in $R_{q}$.
- Encoding: An encoding of $a$ at level $i$ is

$$
u=\left[\frac{a+r g}{z^{i}}\right]_{q}
$$

where $a+r g$ is a small element in $a+\langle g\rangle$.

The GGH13 multilinear map: encodings

- Sample z uniformly in $R_{q}$.
- Encoding: An encoding of $a$ at level $i$ is

$$
u=\left[\frac{a+r g}{z^{i}}\right]_{q}
$$

where $a+r g$ is a small element in $a+\langle g\rangle$.

## Addition and multiplication

## Addition:

$$
\left[\frac{a_{1}+r_{1} g}{z^{i}}\right]_{q}+\left[\frac{a_{2}+r_{2} g}{z^{i}}\right]_{q}=\left[\frac{a_{1}+a_{2}+r^{\prime} g}{z^{i}}\right]_{q}
$$

Multiplication:

$$
\left[\frac{a_{1}+r_{1} g}{z^{i}}\right]_{q} \cdot\left[\frac{a_{2}+r_{2} g}{z^{j}}\right]_{q}=\left[\frac{a_{1} \cdot a_{2}+r^{\prime} g}{z^{i+j}}\right]_{q}
$$

## The GGH13 multilinear map: zero-test

- Sample $h$ in $R$ of the order of $q^{1 / 2}$.
- Define

$$
p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q} .
$$

## The GGH13 multilinear map: zero-test

- Sample $h$ in $R$ of the order of $q^{1 / 2}$.
- Define

$$
p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q} .
$$

Zero-test
To test if $u=\left[c / z^{\kappa}\right]$ is an encoding of zero (i.e. $c=0 \bmod g$ ), compute

$$
\left[u \cdot p_{z t}\right]_{q}=\left[c h g^{-1}\right]_{q} .
$$

This is small iff $c$ is a small multiple of $g$.

## Quantum double-zero-test

Reminder
Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

## Quantum double-zero-test

Reminder
Zero-test: $p_{z t}=\left[z^{\kappa} h^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$


## Quantum double-zero-test

## Reminder

Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$
- Zero-test them $\Rightarrow\left[u_{i} p_{z t}\right]_{q}=c_{i} h$


## Quantum double-zero-test

## Reminder

Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$
- Zero-test them $\Rightarrow\left[u_{i} p_{z t}\right]_{q}=c_{i} h$
- Recover ideal $\langle h\rangle$ from the $c_{i} h$


## Quantum double-zero-test

## Reminder

Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$
- Zero-test them $\Rightarrow\left[u_{i} p_{z t}\right]_{q}=c_{i} h$
- Recover ideal $\langle h\rangle$ from the $c_{i} h$
- Recover $h$ from $\langle h\rangle$ (quantum poly time [BS16, CDPR16])
[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.


## Quantum double-zero-test

## Reminder

Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$
- Zero-test them $\Rightarrow\left[u_{i} p_{z t}\right]_{q}=c_{i} h$
- Recover ideal $\langle h\rangle$ from the $c_{i} h$
- Recover $h$ from $\langle h\rangle$ (quantum poly time [BS16, CDPR16])
- Create $p_{z t}^{\prime}=\left[p_{z t}^{2} / h^{2}\right]_{q}=\left[z^{2 \kappa} g^{-2}\right]_{q}$
[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.


## Quantum double-zero-test

## Reminder

Zero-test: $p_{z t}=\left[z^{\kappa} h g^{-1}\right]_{q}$.

- Get multiple top-level encoding of zero $u_{i}=\left[c_{i} g / z^{\kappa}\right]_{q}$
- Zero-test them $\Rightarrow\left[u_{i} p_{z t}\right]_{q}=c_{i} h$
- Recover ideal $\langle h\rangle$ from the $c_{i} h$
- Recover $h$ from $\langle h\rangle$ (quantum poly time [BS16, CDPR16])
- Create $p_{z t}^{\prime}=\left[p_{z t}^{2} / h^{2}\right]_{q}=\left[z^{2 \kappa} g^{-2}\right]_{q}$

$$
\begin{aligned}
{\left[u p_{z t}^{\prime}\right]_{q} \text { small } } & \Leftrightarrow u=\left[c g^{2} / z^{2 \kappa}\right]_{q} \text { for some small } c \\
& \Leftrightarrow u \text { is a double zero at level } 2 \kappa
\end{aligned}
$$

[BS16] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.
[CDPR16] R. Cramer, L. Ducas, C. Peikert and O.Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings, Eurocrypt.

