e

A. Pellet-Mary

Theoretical obfuscation

Alice Pellet-Mary

LIP, ENS de Lyon

Fridaycon, Quarkslab
May 17, 2019

ENS DE LYON

European Research Council
Established by the European Commission

Theoretical obfuscation Fridaycon 1/22

Obfuscation

An obfuscator should:
@ render the code of a program unintelligible;

@ while preserving functionality and efficiency.

A. Pellet-Mary Theoretical obfuscation Fridaycon 2/22

Overview of the talk

@ Definition

© Candidates
@ Security
@ Practicability

© Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation

Outline of the talk

@ Definition

A. Pellet-Mary Theoretical obfuscation

What is a program?

e C/C++/Python/--- code;

A. Pellet-Mary Theoretical obfuscation

What is a program?

e C/C++/Python/--- code;

@ Turing machine;

A. Pellet-Mary Theoretical obfuscation

What is a program?
e C/C++/Python/--- code;

@ Turing machine;

@ Boolean circuit;

XV (yAz)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

What is a program?

e C/C++/Python/--- code;
@ Turing machine;
@ Boolean circuit;

@ Branching programs;

X
XV (yAz)

y

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

Virtual Black Box (VBB) obfuscation

Recall
C = class of all polynomial size boolean circuits

A VBB obfuscator O : C — C should satisfy

A. Pellet-Mary Theoretical obfuscation

Virtual Black Box (VBB) obfuscation

Recall
C = class of all polynomial size boolean circuits

A VBB obfuscator O : C — C should satisfy
e (Functionality) For all C € C, O(C) = C;

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall
C = class of all polynomial size boolean circuits

A VBB obfuscator O : C — C should satisfy
e (Functionality) For all C € C, O(C) = C;
o (Efficiency) For all C € C,

O(C)| < p(|C]) for some polynomial p;

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall
C = class of all polynomial size boolean circuits

A VBB obfuscator O : C — C should satisfy
e (Functionality) For all C € C, O(C) = C;
o (Efficiency) For all C € C, |O(C)| < p(|C|) for some polynomial p;

o (Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. forall C €C,

P[A(O(C)) = 1] — P [SimC(1/€1) = 1” < negl.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall
C = class of all polynomial size boolean circuits

A VBB obfuscator O : C — C should satisfy
e (Functionality) For all C € C, O(C) = C;
o (Efficiency) For all C € C, |O(C)| < p(|C|) for some polynomial p;

o (Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. forall C €C,

P[A(O(C)) = 1] — P [Sim€(1/€]) = 1” < negl.

VBB obfuscation is impossible to achieve [BGIT01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.
Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C — C should satisfy

A. Pellet-Mary Theoretical obfuscation

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C — C should satisfy
e (Functionality) For all C € C, O(C) = C;

A. Pellet-Mary Theoretical obfuscation

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C — C should satisfy

e (Functionality) For all C € C, O(C) = C;
o (Efficiency) For all C € C,

O(C)| < p(|C]) for some polynomial p;

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C — C should satisfy

e (Functionality) For all C € C, O(C) = C;
o (Efficiency) For all C € C, |O(C)| < p(|C|) for some polynomial p;
e (indistinguishability) For all Ci, G, € C with G = G,

O(Cl) >~ O(CQ)

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Why is iO useful (1)

iO achieves “best possible” obfuscation

A. Pellet-Mary Theoretical obfuscation

Why is iO useful (1)

iO achieves “best possible” obfuscation

Proof:

o let O be an iO obfuscator and O be another obfuscator

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves “best possible” obfuscation

Proof:
o let O be an iO obfuscator and O be another obfuscator

e forany C € C, O(C) =, O(0'(C))

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves “best possible” obfuscation

Proof:
@ let O be an iO obfuscator and O’ be another obfuscator
e forany C € C, O(C) =, O(0'(C))
e O(O'(C)) reveals less info than O'(C)

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves “best possible” obfuscation

Proof:
@ let O be an iO obfuscator and O’ be another obfuscator
e forany C € C, O(C) =, O(0'(C))
e O(O'(C)) reveals less info than O'(C)
e O(C) reveals less info than O'(C)

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves “best possible” obfuscation

Proof:
@ let O be an iO obfuscator and O’ be another obfuscator
e forany C € C, O(C) =, O(0'(C))
e O(O'(C)) reveals less info than O'(C)
e O(C) reveals less info than O'(C)

Informally: anything revealed by O(C) is revealed by any C' = C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C
o take (Setup,Enc,Dec) your favourite SKE scheme

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C
o take (Setup,Enc,Dec) your favourite SKE scheme
@ Setup’:

» sky < Setup(), sko + Setup()
> output sk’ = (ski, ska)

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C
o take (Setup,Enc,Dec) your favourite SKE scheme
@ Setup’:

» sky < Setup(), sko + Setup()
> output sk’ = (skq, ska)
e Enc’(m, sk’):
> C — Enc(m, Skl), Cyr <— Enc(m,skz)
» output (c1, ¢2)

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C
o take (Setup,Enc,Dec) your favourite SKE scheme
@ Setup’:
» sky < Setup(), sko + Setup()
> output sk’ = (skq, ska)
e Enc’(m, sk’):
> C — Enc(m, Skl), Cyr <— Enc(m,skz)
» output (c1, ¢2)
@ Dec’:
» Ci(c1,) = Dec(skq, c1) (sky hardcoded in ()
» Gy(c1,) = Dec(ska, ¢p) (ska hardcoded in G,)

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C' = C
o take (Setup,Enc,Dec) your favourite SKE scheme
@ Setup’:

» sky < Setup(), sko + Setup()
> output sk’ = (skq, ska)
e Enc’(m, sk’):
> C — Enc(m, Skl), Cyr <— Enc(m,skz)
» output (c1, ¢2)
@ Dec’:
> Cl(Cl, C2) = Dec(skl, Cl) (Skl hardcoded in Cl)
» Gy(c1,) = Dec(ska, ¢p) (ska hardcoded in G,)

G=G=C=0(G) ~: O(C) does not reveal sk; or sky

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Outline of the talk

© Candidates
@ Security
@ Practicability

A. Pellet-Mary Theoretical obfuscation

Disclaimer

We only have candidate iO

(no construction based on standard cryptographic assumptions)

A. Pellet-Mary Theoretical obfuscation Fridaycon 11/22

Three main categories

@ Branching program obfuscators

A. Pellet-Mary Theoretical obfuscation

Three main categories

@ Branching program obfuscators
» needs bootstrapping via fully homomorphic encryption

A. Pellet-Mary Theoretical obfuscation

Three main categories

@ Branching program obfuscators

» needs bootstrapping via fully homomorphic encryption
» security proofs in some idealized models ...
» ... but many attacks

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

@ Branching program obfuscators

» needs bootstrapping via fully homomorphic encryption
» security proofs of VBB in some idealized models ...
» ... but many attacks

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

@ Branching program obfuscators

» needs bootstrapping via fully homomorphic encryption
» security proofs of VBB in some idealized models ...
» ... but many attacks

o Circuit obfuscators
» no need for bootstrapping

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

@ Branching program obfuscators

» needs bootstrapping via fully homomorphic encryption
» security proofs of VBB in some idealized models ...
» ... but many attacks

o Circuit obfuscators

» no need for bootstrapping
» security proofs of VBB in some idealized models ...
» ... but many attacks

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

@ Branching program obfuscators

» needs bootstrapping via fully homomorphic encryption
» security proofs of VBB in some idealized models ...
» ... but many attacks

o Circuit obfuscators

» no need for bootstrapping
» security proofs of VBB in some idealized models ...
» ... but many attacks

@ Obfuscation via functional encryption
» try to find the weakest primitive implying iO
» some attacks and impossibility results (not well understood yet)
» most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Security

Branching program and circuit obfuscators use multilinear maps.
All the candidate multilinear maps we know suffer from weaknesses.

A. Pellet-Mary Theoretical obfuscation Fridaycon 13/22

Security

Branching program and circuit obfuscators use multilinear maps.
All the candidate multilinear maps we know suffer from weaknesses.

number of | still standing | still standing
candidates classically quantumly
Branching ~ 20 ~ 10 3
program iO
Circuit i0 ~ 8 ~ 8 0

All attacks rely on the underlying multilinear map

A. Pellet-Mary Theoretical obfuscation

Fridaycon

13/22

Restricted functionalities

@ point functions
f(x)=1iff x=y

A. Pellet-Mary Theoretical obfuscation

Restricted functionalities

@ point functions
f(x)=1iff x=y

@ conjunctions

(X1, .. Xn) = /\y,- (with y; = x; or X;)
i€l

A. Pellet-Mary Theoretical obfuscation

Restricted functionalities

@ point functions
f(x)=1iff x=y

@ conjunctions

(X1, Xn) = /\y,- (with y; = x; or X;)
icl
@ compute-and-compare functions

fey(x) = 1iff g(x) =y

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Restricted functionalities
@ point functions
f(x)=1iff x=y

@ conjunctions

(X1, Xn) = /\y,- (with y; = x; or X;)
icl
@ compute-and-compare functions

fey(x) =1iff g(x) =y
VBB obfuscators based on RLWE

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Practicability

A. Pellet-Mary Theoretical obfuscation

. security size . . .
function obfuscation| evaluation security
parameter | obfuscated . . ; reference
obfuscated time time assumption
A program
1010 mults
AES 128 18 700 TB of 10® bits none - [YLX17]
integers
one-round
key-exchange 52 4.3 GB 2h20 <1 min none - [CP18]
with 4 users
X1 e
Ap X - X 80 80 h 25 min none [HHSSD17]
A%
x1 A Xa A\) entropic 4
A e 53 6.2 min 32ms RLWE [CDCG*18]
XA X 73 6.7h 245 entropic | 1pcG+1g)
A Xea : ’ RLWE
Fridaycon 15/22

Outline of the talk

© Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).
A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the
input).

i [1[2]3]4]5]6 x= 011
inp()) |1 [1]2]1]3]2

A A1 Azl As1 As1 As.1 Ag,1 A
0 A1 Az Az A As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).
A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the
input).

i [1[2]3]4]5]6 x= 011
inp()) |1 [1]2]1]3]2

A A1 Azl As1 As1 As.1 Ag,1 A
0 A1 Az Az A As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),
@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the

input).
i 112|134 |5|6 x= 011
inp() | 112132 4

A x A11 Azl As1 As1 As.1 Ag,1 A
0 Ar0 Az Az A As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),
@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the

input).
i 112|134 |5|6 x= 011
inp() | 112132 4

A1 1 Az 1 Az As1 As 1 Ag 1
A)))))) A
o X A1 % Az Az A As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),
@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the

input).
i 112|134 |5|6 x= 011
inp() | 112|132 1

A1 1 Az 1 Az 1 As1 As 1 Ag 1
Ay X X X ’ ’ ’ ’ A
0 A1 Az As0 A As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),
@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the

input).
i 112|134 |5|6 x= 011
inp() | 112132 4

A1 1 Az 1 Az As 1 As 1 Ag 1
Ay X X X "X ’ ’ ’ A
0 A1 Az As0 Ag As 0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).
A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the
input).

i [1[2]3]4]5]6 x= 011
inp()) |1 [1]2]1]|3]2

A1 1 Az 1 Az As 1 As 1 Ag 1
Ay X X X X X ’ ’ A
0 A1 Az As0 A As.0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),
@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the

input).
i 112|134 |5|6 x= 011
inp() | 112132 1

A1 1 Az 1 Az As 1 As 1 As.1
Ay X X X X X X ’ A
0 A1 Az As0 A As.0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).
A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the
input).

i [1[2]3]4]5]6 x= 011
inp()) |1 [1]2]1]3]2

A1 1 Az 1 Az As 1 As 1 Ag 1
Ay X X X X X X T ox A
0 A1 Az As0 A As.0 Ag.0 !

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).
A Branching Program (BP) is a collection of

® 2/ matrices A;p, (for i € {1,...,¢} and b € {0,1}),

@ two vectors Ag and A1,

@ a function inp: {1,...,¢} = {1,...,r} (where r is the size of the
input).

i [1[2]3]4]5]6 x= 011
inp()) |1 [1]2]1]3]2

A A A _
Ay x Ly A2 As1 o A As.1 Ag,1 0—0

X X X
A1 Az As0 A As.0 Ag.0 T+ 01

A. Pellet-Mary Theoretical obfuscation

Fridaycon 17/22

Cryptographic multilinear maps

Definition: x-multilinear map

Different levels of encodings, from 1 to k.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a, i), Enc(az,i)) = Enc(a; + az, i).
Multiplication: Mult(Enc(as, i), Enc(ap,j)) = Enc(a; - a2, i +J).

Zero-test: Zero-test(Enc(a, k)) = True iff a = 0.

A. Pellet-Mary Theoretical obfuscation Fridaycon 18/22

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization

» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

A11

Ao

A10

)

A. Pellet-Mary Theoretical obfuscation

Ao 1

Az 1

A0

)

As.0

)

Fridaycon

Ay

19/22

Simple obfuscator

Input: A branching program

Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors
Bi1 B> 1 Bs.1
A11 Az1 A3 1 N
0 Ao
A
Bi g B> Bs 4
A10 A0 As.0

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks

» Killian's randomization

» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

R!

A11

R>

Ry!

Ao 1

R3

Ry !

A3 1

R4

Ao

R!

A10

)

R>

Ry!

A0

)

R3

Ry !

As.0

)

Ra

A. Pellet-Mary Theoretical obfuscation

Fridaycon

Ay

19/22

Simple obfuscator

@ Input: A branching program

@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

11X |A11

Ao

a1,0%X |A10

)

A. Pellet-Mary Theoretical obfuscation

a1 X

Q20 X

Ao 1

A0

)

31X

@30 X

Az 1

As.0

)

Fridaycon

Ay

19/22

Simple obfuscator

@ Input: A branching program
@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

A10 Z;,/o As3.0

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

@ Input: A branching program
@ Randomize the branching program

» Add random diagonal blocks
» Killian’s randomization
» Multiply by random (non zero) bundling scalars

@ Encode the matrices using GGH13

@ Qutput: The encoded matrices and vectors

Enc(|Ay 1)) Enc(|Az1]) Enc(|A34|)

))

Enc(Ag
@ | Enc(a,)

Enc(Zro) Enc(,Z;O) Enc(/Z;,/o

~—

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Mixed-input attack

Notations
@ A; input branching program
° m after randomisation

° Z;,\b after encoding with GGH13 map (output of the iO)

A1 Az 1 As 1
Ao _
- As
A1 A2,0 As 0
X1 X2 X1

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° Z\U, after randomisation

° Z;; after encoding with GGH13 map (output of the iO)

A11 Az 1 As 1
Ao -
- As
A1 A2,0 As 0
X1 X2 X1
1 1 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° Z\U, after randomisation

° Z;; after encoding with GGH13 map (output of the iO)

A11 Az 1 As 1
Ao -
- As
A1 Az,0 As 0
X1 X2 X1
1 0 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° Z\U, after randomisation

° Z;; after encoding with GGH13 map (output of the iO)

A1 Az 1 As 1
Ao -
- As
A1 Az0 As o
X1 X2 X1
0 1 0

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° Z\U, after randomisation

° Z;; after encoding with GGH13 map (output of the iO)

A1 Az 1 As 1
Ao -
- As
A1 A2,0 As o
X1 X2 X1
0 0 0

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° Z\U, after randomisation

° Z;; after encoding with GGH13 map (output of the iO)

A1 Az 1 As 1
Ao -
- As
A1 Az,0 As 0
X1 X2 X1
0 0 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations
@ A; input branching program
° m after randomisation

° Z;,\b after encoding with GGH13 map (output of the iO)

Enc(,Zl\:l ,1) Enc(ZZl ,1) Enc(Z;

[
~—

Enc(Aq,1)

Vo |EncCA\7, 1)

Enc(|A1[,1) Enc(]Az0|,1) Enc(|Asgl,1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: kK =5

))

Enc(Ag, 1
(—0) |Ean\v4,1)

E”C(E ;1) Enc(|A21],1) Enc(|A34],1)

Enc(,ZL/O ,1) Enc(,z\gjo ;1) Enc(|A3,/,1)

)

X1 X2 X1

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: x =6

))

Enc(Ag, 1
(—0) |Ean\v4,1)

E”C(E ;1) Enc(]A21],1) Enc(|A34],2)

Enc(,ZL/O ,2) Enc(,z\gjo ;1) Enc(|As3,/,1)

)

X1 X2 X1

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

@ In the randomization phase = not in this talk
@ Using the mmap = straddling set system

Mmap degree: k=6

))

Enc(Ao, 1
(—0) |EncC4v4,1)

E”C(E ;1) Enc(|A21],1) Enc(|A34],2)

Enc(/Z?o ,2) Enc(,azo ;1) Enc(|A3,/,1)

)

X1 X0 X1
0 0 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

@ In the randomization phase = not in this talk

@ Using the mmap = straddling set system

Mmap degree: k=6

Enc(,Zrl , 1) Enc(|Ay4|,1) Enc(Z;l ,2)

)

EnC(ANO’ 2 | Enc(4,,1)
i) »
Enc(/Z?o ,2) Enc(’KZO ,1) Enc(/Z\;,/o ,1)
X1 X2 X1
0 0 1

Total level: 7 = cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

What to remember

+ 10 would be very useful (at least for theory) ...

A. Pellet-Mary Theoretical obfuscation

What to remember

+ 10 would be very useful (at least for theory) ...

— ... but no constructions from standard assumptions yet

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ 10 would be very useful (at least for theory) ...
— ... but no constructions from standard assumptions yet

— ... even insecure constructions are very inefficient

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ 10 would be very useful (at least for theory) ...
— ... but no constructions from standard assumptions yet
— ... even insecure constructions are very inefficient

-+ maybe for restricted class of functions efficiency and security are
possible

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ 10 would be very useful (at least for theory) ...
— ... but no constructions from standard assumptions yet
— ... even insecure constructions are very inefficient

-+ maybe for restricted class of functions efficiency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

References |

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.

On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1-18. Springer, 2001.

David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Giir, Kevin King, Yuriy Polyakov, Kurt Rohloff,

Gerard W Ryan, and Erkay Savas.
Implementing conjunction obfuscation under entropic ring lwe.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 354-371. IEEE, 2018.

Jean-Sébastien Coron and Hilder VL Pereira.

On kilian's randomization of multilinear map encodings.

ePrint, 2018.

Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz.

Implementing bp-obfuscation using graph-induced encoding.
In SIGSAC, pages 783-798. ACM, 2017.

T S T N P 1

Dingfeng Ye, Peng Liu, and Jun Xu.

How fast can we obfuscate using ideal graded encoding schemes.
ePrint, 2017.

A. Pellet-Mary Theoretical obfuscation Fridaycon 23/22

	Definition
	Candidates
	Security
	Practicability

	Example of construction of an obfuscator
	References

