
Theoretical obfuscation

Alice Pellet-Mary

LIP, ENS de Lyon

Fridaycon, Quarkslab
May 17, 2019

A. Pellet-Mary Theoretical obfuscation Fridaycon 1/22

Obfuscation

An obfuscator should:

render the code of a program unintelligible;

while preserving functionality and e�ciency.

A. Pellet-Mary Theoretical obfuscation Fridaycon 2/22

Overview of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation Fridaycon 3/22

Outline of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation Fridaycon 4/22

What is a program?

C/C++/Python/· · · code;

Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Theoretical obfuscation Fridaycon 5/22

Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C)) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C)) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C)) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C)) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.

A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C)) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.
A. Pellet-Mary Theoretical obfuscation Fridaycon 6/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(indistinguishability) For all C1,C2 ∈ C with C1 ≡ C2,

O(C1) 'c O(C2).

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(indistinguishability) For all C1,C2 ∈ C with C1 ≡ C2,

O(C1) 'c O(C2).

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(indistinguishability) For all C1,C2 ∈ C with C1 ≡ C2,

O(C1) 'c O(C2).

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C) ≡ C ;

(E�ciency) For all C ∈ C, |O(C)| ≤ p(|C |) for some polynomial p;

(indistinguishability) For all C1,C2 ∈ C with C1 ≡ C2,

O(C1) 'c O(C2).

A. Pellet-Mary Theoretical obfuscation Fridaycon 7/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C) 'c O(O′(C))

O(O′(C)) reveals less info than O′(C)

O(C) reveals less info than O′(C)

Informally: anything revealed by O(C) is revealed by any C ′ ≡ C

A. Pellet-Mary Theoretical obfuscation Fridaycon 8/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)

Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2

A. Pellet-Mary Theoretical obfuscation Fridaycon 9/22

Outline of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation Fridaycon 10/22

Disclaimer

We only have candidate iO
(no construction based on standard cryptographic assumptions)

A. Pellet-Mary Theoretical obfuscation Fridaycon 11/22

Three main categories

Branching program obfuscators

I needs bootstrapping via fully homomorphic encryption
I security proofs in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption

I security proofs in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption
I security proofs in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping

I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Three main categories

Branching program obfuscators
I needs bootstrapping via fully homomorphic encryption
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable

A. Pellet-Mary Theoretical obfuscation Fridaycon 12/22

Security

Branching program and circuit obfuscators use multilinear maps.
All the candidate multilinear maps we know su�er from weaknesses.

number of
candidates

still standing
classically

still standing
quantumly

Branching
program iO

≈ 20 ≈ 10 3

Circuit iO ≈ 8 ≈ 8 0

All attacks rely on the underlying multilinear map

A. Pellet-Mary Theoretical obfuscation Fridaycon 13/22

Security

Branching program and circuit obfuscators use multilinear maps.
All the candidate multilinear maps we know su�er from weaknesses.

number of
candidates

still standing
classically

still standing
quantumly

Branching
program iO

≈ 20 ≈ 10 3

Circuit iO ≈ 8 ≈ 8 0

All attacks rely on the underlying multilinear map

A. Pellet-Mary Theoretical obfuscation Fridaycon 13/22

Restricted functionalities

point functions
fy (x) = 1 i� x = y

conjunctions

f (x1, . . . , xn) =
∧
i∈I

yi (with yi = xi or x̄i)

compute-and-compare functions

fg ,y (x) = 1 i� g(x) = y

VBB obfuscators based on RLWE

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Restricted functionalities

point functions
fy (x) = 1 i� x = y

conjunctions

f (x1, . . . , xn) =
∧
i∈I

yi (with yi = xi or x̄i)

compute-and-compare functions

fg ,y (x) = 1 i� g(x) = y

VBB obfuscators based on RLWE

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Restricted functionalities

point functions
fy (x) = 1 i� x = y

conjunctions

f (x1, . . . , xn) =
∧
i∈I

yi (with yi = xi or x̄i)

compute-and-compare functions

fg ,y (x) = 1 i� g(x) = y

VBB obfuscators based on RLWE

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Restricted functionalities

point functions
fy (x) = 1 i� x = y

conjunctions

f (x1, . . . , xn) =
∧
i∈I

yi (with yi = xi or x̄i)

compute-and-compare functions

fg ,y (x) = 1 i� g(x) = y

VBB obfuscators based on RLWE

A. Pellet-Mary Theoretical obfuscation Fridaycon 14/22

Practicability

function

obfuscated

security

parameter

λ

size

obfuscated

program

obfuscation

time

evaluation

time

security

assumption
reference

AES 128 18 700 TB
1010 mults
of 108 bits
integers

none - [YLX17]

one-round
key-exchange
with 4 users

52 4.8 GB 2h20 ≤ 1 min none - [CP18]

Ax1
1 × · · · ×
Ax20
20

80 80 h 25 min none [HHSSD17]

x1 ∧ x̄4 ∧
· · · ∧ x32

53 6.2 min 32ms
entropic
RLWE

[CDCG+18]

x1 ∧ x̄4 ∧
· · · ∧ x64

73 6.7h 2.4s
entropic
RLWE

[CDCG+18]

A. Pellet-Mary Theoretical obfuscation Fridaycon 15/22

Outline of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator

A. Pellet-Mary Theoretical obfuscation Fridaycon 16/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0

×

A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1

×

A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1

×

A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1

×

A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1
↑

↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1

×

A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1

×

A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑

↑

↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1

×

A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7

= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Branching programs

A branching program is a way of representing a function (like a Turing
machine, or a circuit).

A Branching Program (BP) is a collection of

2` matrices Ai ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors A0 and A`+1,

a function inp : {1, . . . , `} → {1, . . . , r} (where r is the size of the
input).

i 1 2 3 4 5 6

inp(i) 1 1 2 1 3 2

x = 0 1 1

↑ ↑ ↑

A0 × A1,0

A1,1 ×
A2,0

A2,1 ×
A3,0

A3,1 ×
A4,0

A4,1 ×
A5,0

A5,1 ×
A6,0

A6,1 × A7
= 0→ 0
6= 0→ 1

A. Pellet-Mary Theoretical obfuscation Fridaycon 17/22

Cryptographic multilinear maps

De�nition: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Denote by Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.

A. Pellet-Mary Theoretical obfuscation Fridaycon 18/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A00

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0

R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14

Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

A0

0
R1

Enc()

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

A4

?

R−14Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

Ã3,0

Ã3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−14Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Simple obfuscator

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using GGH13

Output: The encoded matrices and vectors

Ã0

0
R1

Enc()

Ã1,0

Ã1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc()

Enc()

Ã2,0

Ã2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc()

Enc()

Ã3,0

Ã3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc()

Enc()

Ã4

?

R−14

Enc()

A. Pellet-Mary Theoretical obfuscation Fridaycon 19/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1

1

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2

1

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1

1

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1
1

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
1

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1
1

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1
0

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
1

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
0

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1
0

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
0

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Â0

Enc(, 1)

Â1,0

Â1,1

x1
0

Enc(, 1)

Enc(, 1)

Â2,0

Â2,1

x2
0

Enc(, 1)

Enc(, 1)

Â3,0

Â3,1

x1
1

Enc(, 1)

Enc(, 1)

Â4

Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with GGH13 map (output of the iO)

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1
0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

A. Pellet-Mary Theoretical obfuscation Fridaycon 20/22

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 5

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 5

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 1)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 1)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1

0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2

0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1

1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1
0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk

Using the mmap ⇒ straddling set system

Mmap degree: κ = 6

Ã0Enc(, 1)

Ã1,0

Ã1,1

x1
0

Enc(, 2)

Enc(, 1)

Ã2,0

Ã2,1

x2
0

Enc(, 1)

Enc(, 1)

Ã3,0

Ã3,1

x1
1

Enc(, 1)

Enc(, 2)

Ã4Enc(, 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Theoretical obfuscation Fridaycon 21/22

What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?

A. Pellet-Mary Theoretical obfuscation Fridaycon 22/22

References I

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang.

On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1�18. Springer, 2001.

David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Gür, Kevin King, Yuriy Polyakov, Kurt Rohlo�,

Gerard W Ryan, and Erkay Savas.
Implementing conjunction obfuscation under entropic ring lwe.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 354�371. IEEE, 2018.

Jean-Sébastien Coron and Hilder VL Pereira.

On kilian's randomization of multilinear map encodings.
ePrint, 2018.

Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz.

Implementing bp-obfuscation using graph-induced encoding.
In SIGSAC, pages 783�798. ACM, 2017.

Dingfeng Ye, Peng Liu, and Jun Xu.

How fast can we obfuscate using ideal graded encoding schemes.
ePrint, 2017.

A. Pellet-Mary Theoretical obfuscation Fridaycon 23/22

	Definition
	Candidates
	Security
	Practicability

	Example of construction of an obfuscator
	References

