Theoretical obfuscation

Alice Pellet-Mary

LIP, ENS de Lyon

Fridaycon, Quarkslab
May 17, 2019

Obfuscation

An obfuscator should:

- render the code of a program unintelligible;
- while preserving functionality and efficiency.

Overview of the talk

(1) Definition
(2) Candidates

- Security
- Practicability
(3) Example of construction of an obfuscator

Outline of the talk

(1) Definition

(2) Candidates

- Security
- Practicability
(3) Example of construction of an obfuscator

What is a program?

- $\mathrm{C} / \mathrm{C}++$ /Python/ \cdots code;

What is a program?

- C/C++/Python/… code;
- Turing machine;

What is a program?

- C/C++/Python/… code;
- Turing machine;
- Boolean circuit;

Notation
$\mathcal{C}=$ class of all polynomial size boolean circuits

What is a program?

- C/C++/Python/… code;
- Turing machine;
- Boolean circuit;
- Branching programs;

Notation
$\mathcal{C}=$ class of all polynomial size boolean circuits

Virtual Black Box (VBB) obfuscation

Recall
$\mathcal{C}=$ class of all polynomial size boolean circuits

A VBB obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

Virtual Black Box (VBB) obfuscation

Recall
$\mathcal{C}=$ class of all polynomial size boolean circuits

A VBB obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;

Virtual Black Box (VBB) obfuscation

Recall
$\mathcal{C}=$ class of all polynomial size boolean circuits

A VBB obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;
- (Efficiency) For all $C \in \mathcal{C},|\mathcal{O}(C)| \leq p(|C|)$ for some polynomial p;

Virtual Black Box (VBB) obfuscation

Recall

$\mathcal{C}=$ class of all polynomial size boolean circuits

A VBB obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;
- (Efficiency) For all $C \in \mathcal{C},|\mathcal{O}(C)| \leq p(|C|)$ for some polynomial p;
- (Virtual Black Box security) For all PPT \mathcal{A}, there exists a PPT Sim s.t. for all $C \in \mathcal{C}$,

$$
\left|\mathbb{P}[\mathcal{A}(\mathcal{O}(C))=1]-\mathbb{P}\left[\operatorname{sim}^{C}\left(1^{|C|}\right)=1\right]\right| \leq \text { neg } \mid .
$$

Virtual Black Box (VBB) obfuscation

Recall

$\mathcal{C}=$ class of all polynomial size boolean circuits
A VBB obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;
- (Efficiency) For all $C \in \mathcal{C},|\mathcal{O}(C)| \leq p(|C|)$ for some polynomial p;
- (Virtual Black Box security) For all PPT \mathcal{A}, there exists a PPT Sim s.t. for all $C \in \mathcal{C}$,

$$
\left|\mathbb{P}[\mathcal{A}(\mathcal{O}(C))=1]-\mathbb{P}\left[\operatorname{sim}^{C}\left(1^{|C|}\right)=1\right]\right| \leq \text { negl. }
$$

VBB obfuscation is impossible to achieve $\left[\mathrm{BGI}^{+} 01\right]$
[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K. Yang. On the (im) possibility of obfuscating programs, Crypto.

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;
- (Efficiency) For all $C \in \mathcal{C},|\mathcal{O}(C)| \leq p(|C|)$ for some polynomial p;

Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator $\mathcal{O}: \mathcal{C} \rightarrow \mathcal{C}$ should satisfy

- (Functionality) For all $C \in \mathcal{C}, \mathcal{O}(C) \equiv C$;
- (Efficiency) For all $C \in \mathcal{C},|\mathcal{O}(C)| \leq p(|C|)$ for some polynomial p;
- (indistinguishability) For all $C_{1}, C_{2} \in \mathcal{C}$ with $C_{1} \equiv C_{2}$,

$$
\mathcal{O}\left(C_{1}\right) \simeq_{c} \mathcal{O}\left(C_{2}\right)
$$

Why is iO useful (1)

iO achieves "best possible" obfuscation

Why is iO useful (1)
iO achieves "best possible" obfuscation
Proof:

- let \mathcal{O} be an iO obfuscator and \mathcal{O}^{\prime} be another obfuscator

Why is iO useful (1)
iO achieves "best possible" obfuscation
Proof:

- let \mathcal{O} be an iO obfuscator and \mathcal{O}^{\prime} be another obfuscator
- for any $C \in \mathcal{C}, \mathcal{O}(C) \simeq_{c} \mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$

Why is iO useful (1)

iO achieves "best possible" obfuscation

Proof:

- let \mathcal{O} be an iO obfuscator and \mathcal{O}^{\prime} be another obfuscator
- for any $C \in \mathcal{C}, \mathcal{O}(C) \simeq_{c} \mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$
- $\mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$ reveals less info than $\mathcal{O}^{\prime}(C)$

Why is iO useful (1)

iO achieves "best possible" obfuscation
Proof:

- let \mathcal{O} be an iO obfuscator and \mathcal{O}^{\prime} be another obfuscator
- for any $C \in \mathcal{C}, \mathcal{O}(C) \simeq_{c} \mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$
- $\mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$ reveals less info than $\mathcal{O}^{\prime}(C)$
- $\mathcal{O}(C)$ reveals less info than $\mathcal{O}^{\prime}(C)$

Why is iO useful (1)

iO achieves "best possible" obfuscation

Proof:

- let \mathcal{O} be an iO obfuscator and \mathcal{O}^{\prime} be another obfuscator
- for any $C \in \mathcal{C}, \mathcal{O}(C) \simeq_{c} \mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$
- $\mathcal{O}\left(\mathcal{O}^{\prime}(C)\right)$ reveals less info than $\mathcal{O}^{\prime}(C)$
- $\mathcal{O}(C)$ reveals less info than $\mathcal{O}^{\prime}(C)$

Informally: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

Why is iO useful (2)
Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)

Why is iO useful (2)
Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

- take (Setup,Enc,Dec) your favourite SKE scheme

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...

Example: black box decryption (symmetric setting)
Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

- take (Setup,Enc,Dec) your favourite SKE scheme
- Setup':
- $s k_{1} \leftarrow \operatorname{Setup}(), s k_{2} \leftarrow \operatorname{Setup}()$
- output $s k^{\prime}=\left(s k_{1}, s k_{2}\right)$

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...
Example: black box decryption (symmetric setting)

Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

- take (Setup,Enc,Dec) your favourite SKE scheme
- Setup':
- $s k_{1} \leftarrow \operatorname{Setup}(), s k_{2} \leftarrow \operatorname{Setup}()$
- output $s k^{\prime}=\left(s k_{1}, s k_{2}\right)$
- Enc ${ }^{\prime}\left(m, s k^{\prime}\right)$:
- $c_{1} \leftarrow \operatorname{Enc}\left(m, s k_{1}\right), c_{2} \leftarrow \operatorname{Enc}\left(m, s k_{2}\right)$
- output $\left(c_{1}, c_{2}\right)$

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...
Example: black box decryption (symmetric setting)

Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

- take (Setup,Enc,Dec) your favourite SKE scheme
- Setup':
- $s k_{1} \leftarrow \operatorname{Setup}(), s k_{2} \leftarrow \operatorname{Setup}()$
- output $s k^{\prime}=\left(s k_{1}, s k_{2}\right)$
- Enc ${ }^{\prime}\left(m, s k^{\prime}\right)$:
- $c_{1} \leftarrow \operatorname{Enc}\left(m, s k_{1}\right), c_{2} \leftarrow \operatorname{Enc}\left(m, s k_{2}\right)$
- output $\left(c_{1}, c_{2}\right)$
- Dec':
- $C_{1}\left(c_{1}, c_{2}\right)=\operatorname{Dec}\left(s k_{1}, c_{1}\right)$ ($s k_{1}$ hardcoded in C_{1})
- $C_{2}\left(c_{1}, c_{2}\right)=\operatorname{Dec}\left(s k_{2}, c_{2}\right)$ ($s k_{2}$ hardcoded in C_{2})

Why is iO useful (2)

Many cryptographic constructions from iO: functional encryption, deniable encryption, NIKZs, oblivious transfer, ...
Example: black box decryption (symmetric setting)

Recall: anything revealed by $\mathcal{O}(C)$ is revealed by any $C^{\prime} \equiv C$

- take (Setup,Enc,Dec) your favourite SKE scheme
- Setup':
- $s k_{1} \leftarrow \operatorname{Setup}(), s k_{2} \leftarrow \operatorname{Setup}()$
- output $s k^{\prime}=\left(s k_{1}, s k_{2}\right)$
- Enc ${ }^{\prime}\left(m, s k^{\prime}\right)$:
- $c_{1} \leftarrow \operatorname{Enc}\left(m, s k_{1}\right), c_{2} \leftarrow \operatorname{Enc}\left(m, s k_{2}\right)$
- output $\left(c_{1}, c_{2}\right)$
- Dec':
- $C_{1}\left(c_{1}, c_{2}\right)=\operatorname{Dec}\left(s k_{1}, c_{1}\right)$ ($s k_{1}$ hardcoded in C_{1})
- $C_{2}\left(c_{1}, c_{2}\right)=\operatorname{Dec}\left(s k_{2}, c_{2}\right)$ ($s k_{2}$ hardcoded in C_{2})

$$
C_{1} \equiv C_{2} \Rightarrow C=\mathcal{O}\left(C_{1}\right) \simeq_{c} \mathcal{O}\left(C_{2}\right) \text { does not reveal } s k_{1} \text { or } s k_{2}
$$

Outline of the talk

(1) Definition

(2) Candidates

- Security
- Practicability

(3) Example of construction of an obfuscator

Disclaimer

We only have candidate iO

(no construction based on standard cryptographic assumptions)

Three main categories

- Branching program obfuscators

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption
- security proofs in some idealized models...
- ... but many attacks

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption
- security proofs of VBB in some idealized models...
- ... but many attacks

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption
- security proofs of VBB in some idealized models...
- ... but many attacks
- Circuit obfuscators
- no need for bootstrapping

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption
- security proofs of VBB in some idealized models...
- ... but many attacks
- Circuit obfuscators
- no need for bootstrapping
- security proofs of VBB in some idealized models ...
- ... but many attacks

Three main categories

- Branching program obfuscators
- needs bootstrapping via fully homomorphic encryption
- security proofs of VBB in some idealized models...
- ... but many attacks
- Circuit obfuscators
- no need for bootstrapping
- security proofs of VBB in some idealized models ...
- ... but many attacks
- Obfuscation via functional encryption
- try to find the weakest primitive implying iO
- some attacks and impossibility results (not well understood yet)
- most of them are not instantiable

Security

Branching program and circuit obfuscators use multilinear maps. All the candidate multilinear maps we know suffer from weaknesses.

Security

Branching program and circuit obfuscators use multilinear maps. All the candidate multilinear maps we know suffer from weaknesses.

	number of candidates	still standing classically	still standing quantumly
Branching program iO	≈ 20	≈ 10	3
Circuit iO	≈ 8	≈ 8	0

All attacks rely on the underlying multilinear map

Restricted functionalities

- point functions

$$
f_{y}(x)=1 \text { iff } x=y
$$

Restricted functionalities

- point functions

$$
f_{y}(x)=1 \text { iff } x=y
$$

- conjunctions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i \in I} y_{i} \quad\left(\text { with } y_{i}=x_{i} \text { or } \bar{x}_{i}\right)
$$

Restricted functionalities

- point functions

$$
f_{y}(x)=1 \text { iff } x=y
$$

- conjunctions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i \in I} y_{i} \quad\left(\text { with } y_{i}=x_{i} \text { or } \bar{x}_{i}\right)
$$

- compute-and-compare functions

$$
f_{g, y}(x)=1 \text { iff } g(x)=y
$$

Restricted functionalities

- point functions

$$
f_{y}(x)=1 \text { iff } x=y
$$

- conjunctions

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i \in I} y_{i} \quad\left(\text { with } y_{i}=x_{i} \text { or } \bar{x}_{i}\right)
$$

- compute-and-compare functions

$$
f_{g, y}(x)=1 \text { iff } g(x)=y
$$

VBB obfuscators based on RLWE

Practicability

function obfuscated	security parameter λ	size obfuscated program	obfuscation time	evaluation time	security assumption	reference
AES	128	18700 TB		10^{10} mults of 10^{8} bits integers	none -	[YLX17]
one-round key-exchange with 4 users	52	4.8 GB	2h20	$\leq 1 \mathrm{~min}$	none -	[CP18]
$\begin{gathered} A_{1}^{x_{1}} \times \cdots \times \\ \quad A_{20}^{x_{20}} \\ \hline \end{gathered}$	80		80 h	25 min	none	[HHSSD17]
$\begin{aligned} & x_{1} \wedge \bar{x}_{4} \wedge \\ & \cdots \wedge x_{32} \end{aligned}$	53		6.2 min	32 ms	entropic RLWE	[CDCG $\left.{ }^{+} 18\right]$
$\begin{aligned} & x_{1} \wedge \bar{x}_{4} \wedge \\ & \cdots \wedge x_{64} \end{aligned}$	73		6.7h	2.45	entropic RLWE	[CDCG $\left.{ }^{+} 18\right]$

Outline of the talk

(1) Definition

(2) Candidates

- Security
- Practicability
(3) Example of construction of an obfuscator

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=0 \quad 1 \quad 1
$$

$\begin{array}{llllllll} & A_{0} & A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} \\ & A_{1,0} & A_{2,0} & A_{3,0} & A_{4,0} & A_{5,0} & A_{6,0} & A_{7}\end{array}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=0 \quad 1 \quad 1
$$

$\begin{array}{llllllll} & A_{0} & A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} \\ & A_{1,0} & A_{2,0} & A_{3,0} & A_{4,0} & A_{5,0} & A_{6,0} & A_{7}\end{array}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

A_{0} $\begin{array}{lllll}A_{1,1} & A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} \\ A_{1,0} & A_{2,0} & A_{3,0} & A_{6,0} & A_{5,0} \\ A_{6,0} & A_{7}\end{array}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$\begin{aligned} & A_{0}\end{aligned} \begin{aligned} & A_{1,1} \\ & A_{1,0}\end{aligned} \times \begin{array}{llllll}A_{2,1} & A_{3,1} & A_{4,1} & A_{5,1} & A_{6,1} & A_{7} \\ A_{2,0} & A_{3,0} & A_{4,0} & A_{5,0} & A_{6,0} & \end{array}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
& \uparrow
\end{array}
$$

$A_{0} \times{ }_{1,1} \times \begin{aligned} & A_{2,1} \\ & A_{1,0}\end{aligned} \times \begin{array}{llll}A_{3,1} \\ A_{2,0}\end{array} \begin{array}{lll}A_{4,1} & A_{5,1} & A_{6,1} \\ A_{3,0} & A_{4,0} & A_{5,0} \\ A_{6,0}\end{array}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$A_{0} \times{ }_{1,1} \times{ }_{A_{2,1}}^{A_{1,0}} \times{ }_{A_{3,1}}^{A_{2,0}} \times \begin{array}{llll}A_{4,1} & A_{5,1} & A_{6,1} \\ A_{3,0}\end{array} A_{4,0}$
$A_{5,0}$$A_{6,0} \quad A_{7}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
\uparrow
\end{array}
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned} A_{6,1} \quad A_{6,0} \quad A_{7}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=\begin{array}{lll}
0 & 1 & 1 \\
& \uparrow
\end{array}
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \quad A_{7}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=0 \quad 1 \quad 1
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times{ }_{A_{2,1}}^{A_{2,0}} \times{ }_{A_{3,1}}^{A_{3,0}} \times \begin{aligned} & A_{4,1} \\ & A_{4,0}\end{aligned} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \times A_{7}$

Branching programs

A branching program is a way of representing a function (like a Turing machine, or a circuit).

A Branching Program (BP) is a collection of

- 2ℓ matrices $A_{i, b}$ (for $i \in\{1, \ldots, \ell\}$ and $b \in\{0,1\}$),
- two vectors A_{0} and $A_{\ell+1}$,
- a function inp : $\{1, \ldots, \ell\} \rightarrow\{1, \ldots, r\}$ (where r is the size of the input).

i	1	2	3	4	5	6
$\operatorname{inp}(i)$	1	1	2	1	3	2

$$
x=0 \quad 1 \quad 1
$$

$A_{0} \times{ }_{A_{1,1}}^{A_{1,0}} \times \begin{aligned} & A_{2,1} \\ & A_{2,0}\end{aligned} \times \begin{aligned} & A_{3,1} \\ & A_{3,0}\end{aligned}{ }_{A_{4,1}}^{A_{4,0}} \times \begin{aligned} & A_{5,1} \\ & A_{5,0}\end{aligned}{ }_{A_{6,1}}^{A_{6,0}} \times{ }_{A_{7}}=0 \rightarrow 0$

Cryptographic multilinear maps

Definition: κ-multilinear map
Different levels of encodings, from 1 to κ.
Denote by $\operatorname{Enc}(a, i)$ a level- $-i$ encoding of the message a.
Addition: $\operatorname{Add}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, i\right)\right)=\operatorname{Enc}\left(a_{1}+a_{2}, i\right)$.
Multiplication: $\operatorname{Mult}\left(\operatorname{Enc}\left(a_{1}, i\right), \operatorname{Enc}\left(a_{2}, j\right)\right)=\operatorname{Enc}\left(a_{1} \cdot a_{2}, i+j\right)$.
Zero-test: Zero-test $(\operatorname{Enc}(a, \kappa))=$ True iff $a=0$.

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$A_{3,1}$
$\underline{A_{0}}$

$$
A_{1,0}
$$

$$
A_{2,0}
$$

$A_{3,0}$

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$$
\begin{array}{c|l|l|l|l|l|}
\hline R_{1}^{-1} & A_{1,1} & R_{2} \\
A_{0} \\
\hline R_{1} & & \begin{array}{ll|l|l|l|l|}
\hline R_{2}^{-1} & A_{2,1} & R_{3} \\
\hline
\end{array} & \begin{array}{|l|l|l|l|}
\hline R_{3}^{-1} & A_{3,1} & R_{4} \\
\hline
\end{array} & & \\
& \begin{array}{l|l|l|l|l|l|}
\hline R_{1}^{-1} & A_{1,0} & R_{2} \\
\hline R_{2}^{-1} & A_{2,0} & R_{3} \\
\hline R_{3}^{-1} & A_{3,0} & R_{4} \\
\hline
\end{array} &
\end{array}
$$

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$$
\alpha_{1,1} \times \boxed{A_{1,1}} \quad \alpha_{2,1} \times \boxed{A_{2,1}} \quad \alpha_{3,1} \times A_{3,1}
$$

A_{0}

$\alpha_{1,0} \times A_{1,0} \quad \alpha_{2,0} \times A_{2,0} \quad \alpha_{3,0} \times A_{3,0}$

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors

$$
\begin{aligned}
& \widetilde{A_{1,1}} \\
& \widetilde{A_{2,1}} \\
& \widetilde{A_{3,1}} \\
& \widetilde{A_{0}} \\
& \widetilde{A_{1,0}} \\
& \widetilde{A_{2,0}} \\
& \widetilde{A_{3,0}}
\end{aligned}
$$

Simple obfuscator

- Input: A branching program
- Randomize the branching program
- Add random diagonal blocks
- Killian's randomization
- Multiply by random (non zero) bundling scalars
- Encode the matrices using GGH13
- Output: The encoded matrices and vectors
$\operatorname{Enc}\left(\widetilde{A_{0}}\right)$

$$
\operatorname{Enc}\left(\widetilde{\widetilde{A_{1,0}}}\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,0}}\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,0}}\right)
$$

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
$\widehat{A_{2,0}}$
x_{2}

$$
\begin{gathered}
\widehat{A_{3,0}} \\
x_{1}
\end{gathered}
$$

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
1
$\widehat{A_{2,0}}$
X_{2}

1
$\widehat{A_{3,0}}$
x_{1}
1

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
1
$\widehat{A_{2,0}}$
x_{2}
0
$\widehat{A_{3,0}}$
x_{1}
1

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
0
$\widehat{A_{2,0}}$
x_{2}
1

$$
\widehat{A_{3,0}}
$$

$$
x_{1}
$$

$$
0
$$

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
0
$\widehat{A_{2,0}}$
x_{2}
0

$$
\widehat{A_{3,0}}
$$

$$
x_{1}
$$

$$
0
$$

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\widehat{A_{3,1}}$
$\widehat{A_{0}}$
$\widehat{A_{1,0}}$
x_{1}
0
$\widehat{A_{2,0}}$
x_{2}
0
$\widehat{A_{3,0}}$
x_{1}
1

Mixed-input attack

Notations

- $A_{i, b}$ input branching program
- $\widetilde{A_{i, b}}$ after randomisation
- $\widehat{A_{i, b}}$ after encoding with GGH13 map (output of the iO)

$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

$$
\operatorname{Enc}\left(\widetilde{\widetilde{A_{1,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{2,1}}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{3,1}}}, 1\right)
$$

Preventing mixed-input attacks

- In the randomization phase \Rightarrow not in this talk
- Using the mmap \Rightarrow straddling set system

Preventing mixed-input attacks

- In the randomization phase \Rightarrow not in this talk
- Using the mmap \Rightarrow straddling set system

Mmap degree: $\kappa=5$

$$
\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 1\right)
$$

$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

$$
\begin{array}{ccc}
\operatorname{Enc}\left(\begin{array}{cc}
\left.\widetilde{A_{1,0}}, 1\right) & \operatorname{Enc}\left(\widetilde{\widetilde{A_{2,0}}}, 1\right) \\
\operatorname{Enc}\left(\widetilde{\widetilde{A_{3,0}}}, 1\right) \\
x_{1} & x_{2}
\end{array} x_{1}\right.
\end{array}
$$

Preventing mixed-input attacks

- In the randomization phase \Rightarrow not in this talk
- Using the mmap \Rightarrow straddling set system

Mmap degree: $\kappa=6$

$$
\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right)
$$

$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

Preventing mixed-input attacks

- In the randomization phase \Rightarrow not in this talk
- Using the mmap \Rightarrow straddling set system

Mmap degree: $\kappa=6$
$\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{3,1}}, 2\right)$
$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

Preventing mixed-input attacks

- In the randomization phase \Rightarrow not in this talk
- Using the mmap \Rightarrow straddling set system

Mmap degree: $\kappa=6$
$\operatorname{Enc}\left(\widetilde{A_{1,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{A_{2,1}}, 1\right) \quad \operatorname{Enc}\left(\widetilde{\widetilde{A_{3,1}}}, 2\right)$
$\operatorname{Enc}\left(\widetilde{A_{0}}, 1\right)$

What to remember

+iO would be very useful (at least for theory) ...

What to remember

$+i \mathrm{O}$ would be very useful (at least for theory) ...

- ... but no constructions from standard assumptions yet

What to remember

$+i O$ would be very useful (at least for theory) ...

- ... but no constructions from standard assumptions yet
- ... even insecure constructions are very inefficient

What to remember

$+i O$ would be very useful (at least for theory) ...

- ... but no constructions from standard assumptions yet
- ... even insecure constructions are very inefficient
+ maybe for restricted class of functions efficiency and security are possible

What to remember

$+i O$ would be very useful (at least for theory) ...

- ... but no constructions from standard assumptions yet
- ... even insecure constructions are very inefficient
+ maybe for restricted class of functions efficiency and security are possible

Questions?

References I

曷
Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs.
In Crypto 2001, pages 1-18. Springer, 2001.
David Bruce Cousins, Giovanni Di Crescenzo, Kamil Doruk Gür, Kevin King, Yuriy Polyakov, Kurt Rohloff, Gerard W Ryan, and Erkay Savas.
Implementing conjunction obfuscation under entropic ring lwe.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 354-371. IEEE, 2018.
Jean-Sébastien Coron and Hilder VL Pereira.
On kilian's randomization of multilinear map encodings.
ePrint, 2018.
Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz.
Implementing bp-obfuscation using graph-induced encoding.
In SIGSAC, pages 783-798. ACM, 2017.
Dingfeng Ye, Peng Liu, and Jun Xu .
How fast can we obfuscate using ideal graded encoding schemes.
ePrint, 2017.

