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What is this talk about

Time/Approximation factor trade-off for SVP in ideal lattices:
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(with 29(") pre-processing)
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Lattices

Lattice

A lattice L is a discrete ‘vector space’ over Z.
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Lattices

Lattice

A lattice L is a discrete ‘vector space’ over Z.
A basis of L is an invertible matrix B such that L = {Bx | x € Z"}.

31 17 10 :
<O 2) and <4 2> are two bases of the above lattice.
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Lattices

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.
Its Euclidean norm is denoted ;.
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Lattices
[ ] [ ] [ ] [ ]
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Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector.
(e.g. of norm < 2)p).
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Lattices

Closest Vector Problem (CVP) J

Given a target point t, find a point of the lattice closest to t.
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Lattices

Approximate Closest Vector Problem (approx-CVP) J

Given a target point t, find a point of the lattice close to t.
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Complexity of SVP/CVP
Applications

Approx-SVP and approx-CVP in generic lattices are conjectured to be hard
to solve both quantumly and classically = used in cryptography

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science.
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Complexity of SVP/CVP
Applications

Approx-SVP and approx-CVP in generic lattices are conjectured to be hard
to solve both quantumly and classically = used in cryptography

Best Time/Approx trade-off for generic lattices: BKZ algorithm [Sch87]
Timey
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[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science.
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Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.
= E.g. ideal lattices
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Structured lattices

Improve efficiency of lattice-based crypto using structured lattices.
= E.g. ideal lattices

Is approx-SVP still hard when restricted to ideal lattices?
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SVP in ideal lattices
[CDW17]: Better than BKZ in the quantum setting
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@ Heuristic

@ For prime power cyclotomic fields

[CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and
Application to ldeal-SVP, Eurocrypt.
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This work

Time4 - - quantum

21 — classical
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@ Heuristic

o Pre-processing 2°(" independent of the choice of the ideal
(non-uniform algorithm).
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Impact

@ Approx-SVP in ideal lattices might be easier than in generic lattices
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Impact

@ Approx-SVP in ideal lattices might be easier than in generic lattices
@ No concrete impact/attack against crypto schemes
» exponential pre-processing
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Impact

@ Approx-SVP in ideal lattices might be easier than in generic lattices
@ No concrete impact/attack against crypto schemes

» exponential pre-processing
» very few schemes based in ideal-SVP [Gen09,GGH13]

‘ schemes ‘—)‘ RLWE ‘—)

ideal SVP ‘

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC.
[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices,
Eurocrypt.
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Impact

@ Approx-SVP in ideal lattices might be easier than in generic lattices
@ No concrete impact/attack against crypto schemes

» exponential pre-processing
» very few schemes based in ideal-SVP [Gen09,GGH13]

ideal SVP ‘

‘ schemes ‘—)‘ RLWE ‘(7_)
module SIVP

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC.
[GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices,
Eurocrypt.
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Outline of the talk

@ Definitions and objective

© The CDPR algorithm

© This work

@ Extension: “Euclidean division” over R
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First definitions

Notation
R =7Z[X]/(X" +1) for n =2k (for simplicity) J
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R =7Z[X]/(X" +1) for n =2k (for simplicity) J

e Unitss R*={ae R|3be R,ab=1}
> eg Z* ={-1,1}
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First definitions

Notation
R =7Z[X]/(X" +1) for n =2k (for simplicity) J

e Unitss R*={ae R|3be R,ab=1}
> eg Z* ={-1,1}

e Principal ideals: (g) = {gr | r € R} (i.e. all multiples of g)
> e.g. (2) = {even numbers} in Z
» g is called a generator of (g)
» The generators of (g) are exactly the ug for u € R*
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Why is (g) a lattice?

R~7"

R =Z[X]/(X" +1) — Z"

r=rp+nX+-+rn1 X"t (royry--yrn-1)

e 6 o o o o o
e 6 o o o o o
e o o o o o

X R
1 e o o o o
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Why is (g) a lattice?

R~7"

R =Z[X]/(X" +1) — Z"

r=rp+nX+-+rn1 X"t (royry--yrn-1)

(g) € R~Z" 4 stable by ‘+" and -’ = lattice

llllle
XI—......R
1
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Objective of this talk

Objective
Given a basis of a principal ideal (g) and a € (0, 1],
Find r € (g) such that ||r|| <200""). ).
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Objective of this talk

Objective

Given a basis of a principal ideal (g) and a € (0, 1],
Find r € (g) such that ||r|| <200""). ).

BKZ algorithm can do it in time 20("™*) can we do better?

Times
2'7
2n0.5
poly >
poly on®® 2" Approximation

factor
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The CDPR algorithm
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Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea
Maybe g is a somehow small element of (g) J

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.
[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.
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Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of (g)

If n=1: eg. (2) = 2 and —2 are the smallest elements.

-6 -4 -2 0 2 4 6
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Main idea of the CDPR algorithm (on an idea of [CGS14])

Idea

Maybe g is a somehow small element of (g)

If n=1: eg. (2) = 2 and —2 are the smallest elements.

-6 -4 -2 0 2 4 6

For larger n: one of the generators is somehow small

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of
Principal Ideals in Cyclotomic Rings, Eurocrypt.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.
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The Log space

Log : R — R" (somehow generalising log to R)

Let1=(1,---,1)and H=1%
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The Log space

Log : R — R" (somehow generalising log to R)
Let1=(1,---,1)and H=1%

Properties
Logr = h+ al, with he H .
@a>0 VERE
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The Log space

Log : R — R" (somehow generalising log to R)
Let1=(1,---,1)and H=1%

Properties

Logr = h+ al, with he H
@a>0
@ a=0iff ris a unit
o N := Log(R*) is a lattice
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The Log space

Log : R — R" (somehow generalising log to R)

Let1=(1,---,1)and H=1%

Properties
Logr = h+ al, with he H
@a>0

@ a=0iff ris a unit

o A := Log(R*) is a lattice
o Log(n - r2) = Log(n) + Log(r2)
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The Log space

Log : R — R" (somehow generalising log to R)

Let1=(1,---,1)and H=1%

Properties

Logr = h+ al, with he H
@a>0 H o Log(r)
@ a=0iff ris a unit Lod

o A := Log(R*) is a lattice
e Log(n - n) = Log(n) + Log(r)

o ||r|| ~ 2l Log rlles
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The CDPR algorithm

What does Log(g) look like?

/ \L\og<g)
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The CDPR algorithm

What does Log(g) look like?

Log(gn\t A 7. .
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The CDPR algorithm

What does Log(g) look like?
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g1 of (g).
» [BS16]: quantum time poly(n) Lok(g1)
» [BEFGK17]: classical time 20(v7) '

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing
generator in cyclotomic integer rings, Eurocrypt.
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The CDPR Algorithm:
e Find a generator g1 of (g).
» [BS16]: quantum time poly(n) Lok(g1)
» [BEFGK17]: classical time 20(v7)

Log(g1)
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g1 of (g).
» [BS16]: quantum time poly(n)
» [BEFGK17]: classical time 20(v7)

H

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing
generator in cyclotomic integer rings, Eurocrypt.
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g1 of (g).
» [BS16]: quantum time poly(n) Lok(g1)
» [BEFGK17]: classical time 20(v7) 2

@ Solve CVP in A

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing
generator in cyclotomic integer rings, Eurocrypt.
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g; of (g).
» [BS16]: quantum time poly(n)
» [BEFGK17]: classical time 20(v)

@ Solve CVP in A

Log(g1)
b

Log(u)

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.
[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing

generator in cyclotomic integer rings, Eurocrypt.
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g; of (g).
» [BS16]: quantum time poly(n) Log(g1)
» [BEFGK17]: classical time 20(v®

0
,

@ Solve CVP in A Log(u)

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing
generator in cyclotomic integer rings, Eurocrypt.
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g; of (g).
» [BS16]: quantum time poly(n) Log(g1)
» [BEFGK17]: classical time 20(v®

@ Solve CVP in A

» Good basis of A
= CVP in poly time

= ||l < O(v/n)
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g; of (g).
» [BS16]: quantum time poly(n) Log(g1)
» [BEFGK17]: classical time 20(v®

@ Solve CVP in A

» Good basis of A
= CVP in poly time

= ||l < O(v/n)

lugr|| < 200V . )
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The CDPR algorithm

The CDPR Algorithm:
e Find a generator g; of (g).

» [BS16]: quantum time poly(n) Time - -~ quantum
> [BEFGK].?] classical time QO(ﬁ) 2" — classical
@ Solve CVP in A o
» Good basis of A 2
= CVP in poly time
[
= HhH < O(\/ﬁ) P ypo|y on®s 2" Approximation
factor

lugr|| < 200V . )

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing
generator in cyclotomic integer rings, Eurocrypt.
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This work
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How to solve CVP in L?

CDPR | This work
Good basis of A | No good basis of L known
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How to solve CVP in L?

CDPR | This work
Good basis of A ‘ No good basis of L known

Key observation
L = AU U;(hLogr, + N) does not depend on (g) = Pre-processing on L J

[DLW19,Ste19]: o Find s € L such that ||s — t|| = O(n®)
o Time:
> 200" (query)
» + 29(7 (pre-processing)

[DLW19]: E. Doulgerakis, T. Laarhoven, and B. de Weger. Finding closest lattice vectors
using approximate Voronoi cells. PQCRYPTO 2019.

[Ste1l9]: N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing —
instantiating the DLW heuristic. arXiv 2019.
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Conclusion

Approximation Query time Pre-processing
20(n%) 20(n*72%) 4 (poly(n) or 20(vM) 20(n)
Timeg ---quantum
21 — classical

2’.’045
poly Kt >
poly  on®® 2" Approximation

factor

+29(" Pre-processing / Non-uniform algorithm
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Extensions

We can extend the algorithm to

@ Non-principal ideals
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Extensions
We can extend the algorithm to
@ Non-principal ideals

o All number fields

-=-- quantum

2" — classical

2" ’Approximation
factor
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Work in progress:
“Euclidean division” over R

joint work with
Changmin Lee, Damien Stehlé and Alexandre Wallet
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Finding short vectors in module lattices

(Principal) Ideals (Free) Modules
Input: ae R a b
Olrj)tput: xeR Input: (c d) € R

such that ||ax|| is small Output: (x,y) € R? such that

IC 801G

is small
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If R =7Z: the LLL algorithm (or Gauss/Lagrange in dim 2)

LLL algorithm over Z:

a b QR ni1 n»2
1.
(C d) - (0 r22)
2. Reduce ri» < ri» mod riq
(= |n2| <|n1l/2)

3. If ‘QQ’ S |r11|/2

(= +r3 < Iri1]/v/2)

» Swap the two columns
» Go to Step 1
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If R =7Z: the LLL algorithm (or Gauss/Lagrange in dim 2)

LLL algorithm over Z:

L <a b) QR <r11 r12> Adaptation to R
c d 0 r» We need:
2. Reduce r2 < ri2 mod iy @ A scalar product (-, -)
(= In2| < |n1l/2) » and a norm | . |
3. If |mo| < |n1l/2 o A division (Step 2)
(= 2+ < ml/V2) > |ro] < (1—¢)|n|

» Swap the two columns » swap condition |ra| < e[|

» Go to Step 1
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Euclidean division

Over Z
Input: a,beZ

Output: re Z
such that |b+ ra| < |a|/2
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Euclidean division

Over Z

Input: a,beZ
Output: re Z
such that |b+ ra| < |a|/2

CVP in Z with target b/a.
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Euclidean division

Over Z Over R
Input: a,beZ CVP in R with target b/a
Output: re Z = output r € R

such that |b + ra| < |a|/2
CVP in Z with target b/a.
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Euclidean division

Over Z

Input: a,beZ
Output: re Z
such that |b + ra| < |a|/2

CVP in Z with target b/a.

Over R
CVP in R with target b/a
= output r € R

Difficulty: Typically
lb/a+ r| ~ /n>1.
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Euclidean division

Over Z Over R
Input: a,beZ CVP in R with target b/a
Output: re Z = output r € R

such that |b+ ra| < al/2 Difficulty: Typically

CVP in Z with target b/a. |b/a+r| ~+/n> 1.

Relax the requirement

Find x,y € R such that
o |[xa+ yb|| < lal|/2
o |ly|l < poly(n)
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Using the Log space

Objective: find x,y € R such that
® |[xa+ yb|| < |lal|/2
o |ly|l < poly(n)

A. Pellet-Mary Approx-SVP in Ideal Lattices



Using the Log space

Objective: find x,y € R such that
o |[xa+ yb|| <lal|/2
o |ly|l < poly(n)

Difficulty: Log works well with x, but not with +

Solution: If || Log(u) — Log(v)|| < e
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(requires to extend Log to take arguments into account)
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Using the Log space

Objective: find x,y € R such that
o |[xa+ yb|| <lal|/2
o |ly|l < poly(n)

Difficulty: Log works well with x, but not with +
Solution: If || Log(u) — Log(v)|| < &
then [[u — v|[ < - min([|ull, [|v]])
(requires to extend Log to take arguments into account)

New objective

Find x,y € R such that
o || Log(xa) — Log(yb)| < &
o || Log(y)loc < O(log n)
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ldea

Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)| < €
® || Log(y)llc < O(logn)

Log(a)

L(.)g(b)
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o || Log(y)llsc < O(log n) Log(z) £
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Log(y)
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Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)| < €
o || Log(y)llec < O(log n) Log(z)

Log(a) |
f 7L0g<y)

£
, Log(®)
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ldea

Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)| < €

° ” Log(y)“OO < O(|0g n) Log(z)
q Log(a) |

—Log(y)
Log(b)
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ldea

Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)| < €
® || Log(y)llc < O(logn)

g(r1) + Log(ra) + -

L
Log(a
H (] ~Log(r})
—Log(rz)

L(.)g(b)

1
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ldea

Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)| < €

o || Log(y)llocc < O(logn)

A. Pellet-Mary

L
q Log(a) |

[[Log(y)|les < O(logn)

g(r1) + Log(ra) A -

/\T—Logw;)
~Log(r)

1 Log(b)
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ldea

Objective: find x,y € R s.t.
o || Log(xa) — Log(yb)|| < e
o || Log(y)llcc < O(log n)

Logr1 Logr --- Logr,
1 0 0
L= 0 1 0
0 0 1

L
P Log(a) |

(1) + Log(ra) N -

—Log(r)
—Log(r4)

| Tog(h)

|[Log(y)llee < O(logn)

Log(b/a)
0
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Conclusion

Difficulty
We need exact CVP in L: approx-CVPP algorithms do not suffice J
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> Classical time 200V / quantum time poly(n)
» Heuristic
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Conclusion

Difficulty
We need exact CVP in L: approx-CVPP algorithms do not suffice J

e We obtain a division in R
» Using CVP oracle in a lattice L of dim n? (depending only on R)

> Classical time 200V / quantum time poly(n)
» Heuristic

@ Can be used to adapt LLL algorithm to modules over R

Questions?
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