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Obfuscation

An obfuscator should:

render the code of a program unintelligible;

while preserving functionality and e�ciency.

Two kind of obfuscators:

practical obfuscators (white box)

theoretical obfuscators (iO)
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Overview of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator
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What is a program?

C/C++/Python/· · · code;

Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Program obfuscation PhD seminar 5/23



What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Program obfuscation PhD seminar 5/23



What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Program obfuscation PhD seminar 5/23



What is a program?

C/C++/Python/· · · code;
Turing machine;

Boolean circuit;

Branching programs;

x

y

z

x̄ ∨ (y ∧ z)

Notation

C = class of all polynomial size boolean circuits

A. Pellet-Mary Program obfuscation PhD seminar 5/23



Virtual Black Box (VBB) obfuscation

Recall

C = class of all polynomial size boolean circuits

A VBB obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C ) ≡ C ;

(E�ciency) O is PPT ⇒ for all C ∈ C, |O(C )| ≤ poly(|C |);
(Virtual Black Box security) For all PPT A, there exists a PPT Sim
s.t. for all C ∈ C,∣∣∣P [A(O(C )) = 1]− P

[
SimC (1|C |) = 1

]∣∣∣ ≤ negl.

VBB obfuscation is impossible to achieve [BGI+01]

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan and K.

Yang. On the (im) possibility of obfuscating programs, Crypto.
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Indistinguishability Obfuscation (iO)

An indistinguishability obfuscator O : C → C should satisfy

(Functionality) For all C ∈ C, O(C ) ≡ C ;

(E�ciency) O is PPT ⇒ for all C ∈ C, |O(C )| ≤ poly(|C |);
(indistinguishability) For all C1,C2 ∈ C with C1 ≡ C2,

O(C1) 'c O(C2).
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If P = NP . . .

If P = NP, then iOs exist, e.g.:
⇒ There exist ine�cient iOs (even if P 6= NP)

O(C ) = smallest circuit computing the same function as C
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Why is iO useful (1)

iO achieves �best possible� obfuscation

Proof:

let O be an iO obfuscator and O′ be another obfuscator

for any C ∈ C, O(C ) 'c O(O′(C ))

O(O′(C )) reveals less info than O′(C )

O(C ) reveals less info than O′(C )

Informally: anything revealed by O(C ) is revealed by any C ′ ≡ C
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Why is iO useful (2)
Many cryptographic constructions from iO:
functional encryption, deniable encryption, NIKZs, oblivious transfer, . . .

Example: black box decryption (symmetric setting)
Recall: anything revealed by O(C) is revealed by any C ′ ≡ C

take (Setup,Enc,Dec) your favourite SKE scheme

Setup':
I sk1 ← Setup(), sk2 ← Setup()
I output sk ′ = (sk1, sk2)

Enc'(m, sk ′):
I c1 ← Enc(m, sk1), c2 ← Enc(m, sk2)
I output (c1, c2)

Dec':
I C1(c1, c2) = Dec(sk1, c1) (sk1 hardcoded in C1)
I C2(c1, c2) = Dec(sk2, c2) (sk2 hardcoded in C2)

C1 ≡ C2 ⇒ C = O(C1) 'c O(C2) does not reveal sk1 or sk2
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Outline of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator
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Disclaimer

We only have candidate iO
(no construction based on standard cryptographic assumptions)
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Three main categories

Branching program obfuscators

I needs bootstrapping via fully homomorphic encryption
I security proofs in some idealized models . . .
I . . . but many attacks

Circuit obfuscators
I no need for bootstrapping
I security proofs of VBB in some idealized models . . .
I . . . but many attacks

Obfuscation via functional encryption
I try to �nd the weakest primitive implying iO
I some attacks and impossibility results (not well understood yet)
I most of them are not instantiable
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Security

Branching program and circuit obfuscators use multilinear maps.
All the candidate multilinear maps we know su�er from weaknesses.

number of
candidates

still standing
classically

still standing
quantumly

Branching
program iO

≈ 20 ≈ 10 3

Circuit iO ≈ 8 ≈ 8 0

All attacks rely on the underlying multilinear map
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Restricted functionalities

VBB obfuscators based on RLWE for

point functions
fy (x) = 1 i� x = y

conjunctions

f (x1, . . . , xn) =
∧
i∈I

yi (with yi = xi or x̄i )

compute-and-compare functions

fg ,y (x) = 1 i� g(x) = y
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Practicability

function

obfuscated

security

parameter

λ

size

obfuscated

program

obfuscation

time

evaluation

time

security

assumption
reference

AES 128 18 700 TB
1010 mults
of 108 bits
integers

none - [YLX17]

one-round
key-exchange
with 4 users

52 4.8 GB 2h20 ≤ 1 min none - [CP18]

Ax1
1 × · · · ×
Ax20
20

80 80 h 25 min none [HHSSD17]

x1 ∧ x̄4 ∧
· · · ∧ x32

53 6.2 min 32ms
entropic
RLWE

[CDCG+18]

x1 ∧ x̄4 ∧
· · · ∧ x64

73 6.7h 2.4s
entropic
RLWE

[CDCG+18]
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Outline of the talk

1 De�nition

2 Candidates
Security
Practicability

3 Example of construction of an obfuscator
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Branching programs

A branching program represents a function (cf Turing machine, or circuit).

A Branching Program (BP) is a collection of

2` matrices Mi ,b (for i ∈ {1, . . . , `} and b ∈ {0, 1}),
two vectors M0 and M`+1,

a vector inp ∈ {1, . . . , r}` (where r is the size of the input).

M0

×

x1

M1,0

M1,1

×

x1

M2,0

M2,1

×

x2

M3,0

M3,1

×

x1

M4,0

M4,1

×

x3

M5,0

M5,1

×

x2

M6,0

M6,1

×

M7

= 0→ 0
6= 0→ 1

BP

Evaluation on x = 0 1 1

↑ ↑ ↑
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Cryptographic multilinear maps

De�nition: κ-multilinear map

Di�erent levels of encodings, from 1 to κ.
Write Enc(a, i) a level-i encoding of the message a.

Addition: Add(Enc(a1, i), Enc(a2, i)) = Enc(a1 + a2, i).

Multiplication: Mult(Enc(a1, i), Enc(a2, j)) = Enc(a1 · a2, i + j).

Zero-test: Zero-test(Enc(a, κ)) = True i� a = 0.
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Simple obfuscator
[GGH+13, BR14, BGK+14, PST14, AGIS14, MSW14, GMM+16]

Input: A branching program

Randomize the branching program
I Add random diagonal blocks
I Killian's randomization
I Multiply by random (non zero) bundling scalars

Encode the matrices using a multilinear map

Output: The encoded matrices and vectors

A0

0
R1

Enc( )

A1,0

A1,1

B1,0

B1,1

R−11 R2

R−11 R2

α1,0×

α1,1×

Enc( )

Enc( )

A2,0

A2,1

B2,0

B2,1

R−12 R3

R−12 R3

α2,0×

α2,1×

Enc( )

Enc( )

A3,0

A3,1

B3,0

B3,1

R−13 R4

R−13 R4

α3,0×

α3,1×

Enc( )

Enc( )

A4

?

R−14Enc( )
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Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with a multilinear map (output of the iO)

Â0

Enc( , 1)

Â1,0

Â1,1

x1

1

Enc( , 1)

Enc( , 1)

Â2,0

Â2,1

x2

1

Enc( , 1)

Enc( , 1)

Â3,0

Â3,1

x1

1

Enc( , 1)

Enc( , 1)

Â4

Enc( , 1)
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Âi ,b after encoding with a multilinear map (output of the iO)

Â0
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Â0

Enc( , 1)
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Â3,1

x1
0

Enc( , 1)

Enc( , 1)

Â4
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Â2,1

x2
0

Enc( , 1)

Enc( , 1)
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Â2,0
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Mixed-input attack

Notations

Ai ,b input branching program

Ãi ,b after randomisation

Âi ,b after encoding with a multilinear map (output of the iO)

Ã0Enc( , 1)

Ã1,0

Ã1,1

x1
0

Enc( , 1)

Enc( , 1)

Ã2,0

Ã2,1

x2
0

Enc( , 1)

Enc( , 1)

Ã3,0

Ã3,1

x1
1

Enc( , 1)

Enc( , 1)
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Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk [GGH+13, BR14]

Using the mmap ⇒ straddling set system
[BGK+14, PST14, AGIS14, MSW14, GMM+16]

Mmap degree: κ = 5

Ã0Enc( , 1)

Ã1,0

Ã1,1

x1

0

Enc( , 1)

Enc( , 1)

Ã2,0

Ã2,1

x2

0

Enc( , 1)

Enc( , 1)

Ã3,0

Ã3,1

x1

1

Enc( , 1)

Enc( , 1)

Ã4Enc( , 1)

Total level: 7 ⇒ cannot zero-test
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Ã4Enc( , 1)

Total level: 7 ⇒ cannot zero-test

A. Pellet-Mary Program obfuscation PhD seminar 22/23



Preventing mixed-input attacks

In the randomization phase ⇒ not in this talk [GGH+13, BR14]

Using the mmap ⇒ straddling set system
[BGK+14, PST14, AGIS14, MSW14, GMM+16]

Mmap degree: κ = 6
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Ã3,1

x1
1

Enc( , 1)

Enc( , 2)
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What to remember

+ iO would be very useful (at least for theory) . . .

− . . . but no constructions from standard assumptions yet

− . . . even insecure constructions are very ine�cient

+ maybe for restricted class of functions e�ciency and security are
possible

Questions?
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History (GGH13-based branching program obfuscation)

2013 2014 2015 2016 2017 2018

[GGH+13]

[BR14]
[BGK+14, PST14]
[AGIS14, MSW14] [GMM+16]

[MSZ16]

[FRS17]

[CGH17]
[ADGM17]

[CHKL18]
[Pel18]

Constructions

Attacks

[MSZ16]: all constructions without diagonal blocks

[ADGM17]: idem MSZ but from circuits

[CGH17]: use input-partitionability (cf CLT13)

⇒ prevented by [FRS17]

[CHKL18]: NTRU attack for speci�c choices of parameters

[Pel18]: quantum attack
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Current status

Attacks
iOs

[GGH+13]
[BR14, BGK+14,
PST14, AGIS14,

MSW14]
[GMM+16]

circuit obfuscators
[Zim15, AB15,

DGG+18]

[MSZ16] fully broken

[CGH17]
input-

partitionable

[CHKL18] some parameters some parameters

[Pel18] quantum quantum

Still standing classically:

[GGH+13]+[FRS17]

[GMM+16]

all circuit obfuscators

Still standing quantumly:

[GGH+13]+[FRS17]
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