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Lattices
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Lattice

A (full-rank) lattice L is a subset of Rn of the form L = {Bx | x ∈ Zn},
with B ∈ Rn×n invertible. B is a basis of L.(
3 1
0 2

)
and

(
17 10
4 2

)
are two bases of the above lattice.
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Lattice problems
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λ1

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.
Its Euclidean norm is denoted λ1.

SIVP (Shortest Independent Vectors Problem): Find n linearly independent
short vectors.
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Lattice problems
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•0
≤ 2λ1

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector.
(e.g. of norm ≤ 2λ1).
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Lattice problems
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• t•

Closest Vector Problem (CVP)

Given a target point t, �nd a point of the lattice closest to t.
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• t

•

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, �nd a point of the lattice close to t.
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Hardness of lattice problems

Best Time/Approximation trade-o� for SVP, CVP, SIVP (even quantumly):
BKZ algorithm [Sch87,SE94]

Time

Approximation
factor

2n2n
0.5poly

2n

2n
0.5

poly

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum

problems. Mathematical programming.
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Structured lattices

Motivation

Schemes using lattices are usually not e�cient
(storage: n2, matrix-vector mult: n2)

⇒ improve e�ciency using structured lattices

Example: NIST post-quantum standardization process

26 candidates (2nd round)

12 lattice-based

11 using structured lattices

Frodo (lvl 1) Kyber (lvl 1)
(unstructured lattices) (structured lattices)

secret key size (in Bytes) 19 888 1 632

public key size (in Bytes) 9 616 800
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Structured lattices: example

Ma =


a1 −an · · · −a2
a2 a1 · · · −a3
...

. . .
. . .

...
an an−1 . . . a1



basis of a special case of
ideal lattice

Ma11 Ma12 Ma1m

Ma21 Ma22 Ma2m

Mam1 Mam2 Mamm

· · ·

· · ·

· · ·

...
...

...
. . .

n

nm

basis of a special case of
module lattice
of rank m

Is SVP still hard when restricted to ideal/module lattices?
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Relations between problems and constructions

Many
protocols

Ideal SIVP

Many
protocols

small rank
Module SIVP

Ring LWE
[SSTX09,LPR10]

small rank
Module LWE [LS15]

most of the time

most of the time

?

[AD17]
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[SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. E�cient public key encryption based on ideal lattices.

Asiacrypt.

[SSTX09] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. Eurocrypt.

[LS15] A. Langlois, D. Stehlé. Worst-case to average-case reductions for module lattices. DCC.
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Relations between problems and constructions

Many
protocols

Ideal SIVP

Many
protocols

small rank
Module SIVP

Ring LWE
[SSTX09,LPR10]

small rank
Module LWE [LS15]

most of the time

most of the time

?

[AD17]

[AD17] M. Albrecht, A. Deo. Large modulus ring-LWE ≥ module-LWE. Asiacrypt.
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Organization

Ideal-SVP with
pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

• rank 2

• arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet
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Previous Works and Results
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State-of-the-art: ideal-SVP

Solving SVP in ideal lattices:

[RBV04]: algorithm for principal ideal lattices of small dimension

[CGS14]: algorithm for principal ideal lattices in cyclotomic �elds
(without analysis)

[CDPR16]: does the analysis of [CGS14]
⇒ 2O(

√
n) approximation factor in quantum poly time

[CDW17]: extends results of [CDPR16] to any ideal (in cyclotomic
�elds)

[PHS19]: extends [CDW17] to obtain more trade-o�s (any number
�eld, exponential pre-processing)

[RBV04] G. Rekaya, J.-C. Bel�ore, E. Viterbo. A very e�cient lattice reduction tool on fast fading channels. ISITA.
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[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: a cautionary tale.
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[CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering short generators of principal ideals in

cyclotomic rings. Eurocrypt.
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[PHS19] A. Pellet-Mary, G. Hanrot, D. Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
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State-of-the-art: module-SVP

Adapting LLL to module lattices:

[Nap96] LLL for some speci�c number �elds
no bound on quality / run-time

[FP96] LLL for any number �elds
no bound on quality / run-time
bound on run-time for speci�c number �elds

[FS10] forget about the module structure and do LLL in Z
[KL17] LLL for norm-Euclidean �elds

bound on run-time but not on quality
bound on quality for biquadratic �elds

[LPSW19] LLL for any number �eld
bound on quality and run-time if oracle solving CVP in a
�xed lattice

[Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des

nombres de Bordeaux.
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[FP96] C. Fieker, M. E. Pohst. Lattices over number �elds. ANTS.
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[KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.
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[LPSW19] LLL for any number �eld
bound on quality and run-time if oracle solving CVP in a
�xed lattice

[LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices. To appear at

Asiacrypt 2019.
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Some mathematical background
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First de�nitions

Notation

R = Z[X ]/(X n + 1), with n = 2k (for simplicity)

Units: R× = {a ∈ R | ∃b ∈ R, ab = 1}
e.g. Z× = {−1, 1}

Principal ideals: 〈g〉 = {gr | r ∈ R} (i.e., all multiples of g)

e.g. 〈2〉 = {even numbers} in Z
g is called a generator of 〈g〉
the generators of 〈g〉 are exactly the ug for u ∈ R×
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Why is 〈g〉 a lattice?

R is a lattice

R = Z[X ]/(X n + 1) → Cn

r(X ) 7→ (r(α1), r(α2), . . . , r(αn)),

where α1, . . . , αn are the roots of X n + 1 in C

{
〈g〉 ⊆ R ' Zn

stable by `+' and `−'
⇒ lattice

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

X

1

〈1 + X 〉

R

October 16, 2019 15/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



Why is 〈g〉 a lattice?

R is a lattice

R = Z[X ]/(X n + 1) → Cn

r(X ) 7→ (r(α1), r(α2), . . . , r(αn)),

where α1, . . . , αn are the roots of X n + 1 in C{
〈g〉 ⊆ R ' Zn

stable by `+' and `−'
⇒ lattice

X

1
• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

〈1 + X 〉
R

October 16, 2019 15/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



The Log Unit Lattice and Previous Works on ideal-SVP
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The Log space

Log : R → Rn (take the log of every coordinate)

Let 1 = (1, · · · , 1) and H = 1⊥.

Properties

Log r = h + a1, with h ∈ H

Log(r1 · r2) = Log(r1) + Log(r2)

a ≥ 0

a = 0 i� r is a unit

‖r‖ ' 2‖ Log r‖∞

The Log unit lattice

Λ := Log(R×) is a lattice in H.
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Previous algorithms

What does Log〈g〉 look like?

Find a generator g1 of 〈g〉.
I [BS16]: quantum poly time

Solve CVP in Λ

Good basis of Λ
(cyclotomic �eld)

⇒ CVP in poly time
⇒ ‖h‖ ≤ Õ(

√
n)

‖ug1‖ ≤ 2Õ(
√
n) · λ1
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Previous algorithms

[CGS14,CDPR16]:

Find a generator g1 of 〈g〉.
I [BS16]: quantum poly time

Solve CVP in Λ

Good basis of Λ
(cyclotomic �eld)

⇒ CVP in poly time
⇒ ‖h‖ ≤ Õ(

√
n)

‖ug1‖ ≤ 2Õ(
√
n) · λ1

[BS16]: J.-F. Biasse, F. Song. E�cient quantum algorithms for computing class groups and solving the principal

ideal problem in arbitrary degree number �elds. SODA.
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√
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Time

Approximation
factor

quantum

classical

2n2n
0.5poly

2n

2n
0.5

poly

• Heuristic • Cyclotomic �elds

[BS16]: J.-F. Biasse, F. Song. E�cient quantum algorithms for computing class groups and solving the principal

ideal problem in arbitrary degree number �elds. SODA.
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Getting Intermediate Trade-o�s, with Pre-processing
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Idea

Important

Log r = h + a1 with a small (and h ∈ H).
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The lattice L

Λ hLog(r1), · · · , hLog(rν)

0

1

1

. . .

1

L =

hLog(g1)

0

t =

Heuristic

For some ν = Õ(n), the covering radius of L satis�es µ(L) = O(1).
(i.e., for all target t, there exists s ∈ L such that ‖t − s‖ = O(1))

October 16, 2019 21/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



The lattice L

Λ hLog(r1), · · · , hLog(rν)

0 . . .

1/
√
n

1/
√
n

1/
√
n

L =

hLog(g1)

0

t =

Heuristic
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How to solve CVP in L?

CDPR This work

Good basis of Λ No good basis of L known

Key observation

L does not depend on 〈g〉

⇒ Pre-processing on L

[Laa16,DLW19,Ste19]: Find s ∈ L such that ‖s − t‖ = Õ(nα)

Time:

2Õ(n1−2α) (query)
+ 2O(n) (pre-processing)

October 16, 2019 22/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



How to solve CVP in L?

CDPR This work

Good basis of Λ No good basis of L known

Key observation

L does not depend on 〈g〉

⇒ Pre-processing on L

[Laa16,DLW19,Ste19]: Find s ∈ L such that ‖s − t‖ = Õ(nα)
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2Õ(n1−2α) (query)
+ 2O(n) (pre-processing)

October 16, 2019 22/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



How to solve CVP in L?

CDPR This work

Good basis of Λ No good basis of L known

Key observation

L does not depend on 〈g〉 ⇒ Pre-processing on L

[Laa16,DLW19,Ste19]: Find s ∈ L such that ‖s − t‖ = Õ(nα)

Time:
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[Laa16,DLW19,Ste19]: Find s ∈ L such that ‖s − t‖ = Õ(nα)

Time:

2Õ(n1−2α) (query)
+ 2O(n) (pre-processing)

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

[DLW19]: E. Doulgerakis, T. Laarhoven, and B. de Weger. Finding closest lattice vectors using approximate Voronoi

cells. PQCRYPTO.

[Ste19]: N. Stephens-Davidowitz. A time-distance trade-o� for GDD with preprocessing � instantiating the DLW

heuristic. CCC.
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Conclusion

Approximation Query time Pre-processing

2Õ(nα) 2Õ(n1−2α) + (poly(n) or 2Õ(
√
n)) 2O(n)

Time

Approximation
factor

quantum

classical

2n2n
0.5poly

2n

2n
0.5

poly

2O(n) pre-processing heuristic any number �eld
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Under the carpet

Any ideal

I unify units and class group (cf [Buc88])

Any number �eld

I the trade-o�s may change with the discriminant

Heuristics

I maths justi�cation
I numerical experiments

[Buc88] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic

number �elds. Séminaire de théorie des nombres.
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Comparison with previous works

Time/Approximation trade-o�s for SVP in ideal lattices:

Time

Approximation
factor

2n2n
0.5poly

2n

2n
0.5

poly

BKZ algorithm

Time

Approximation
factor

quantum

classical

2n2n
0.5poly

2n

2n
0.5

poly

[CDW17]

Time

Approximation
factor

quantum

classical

2n2n
0.5poly

2n

2n
0.5

poly

[PHS19]
(with 2O(n) pre-processing)

(Figures are for prime power cyclotomic �elds)
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Organization

Ideal-SVP with
pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

• rank 2

• arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet
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Rank 2 modules

M =
Mc

Ma

Md

Mb
Ma, Mb, Mc , Md bases of
ideals 〈a〉, 〈b〉, 〈c〉, 〈d〉
in R = Z[X ]/(X n + 1)

Can we extend Gauss' algorithm to matrices over R?
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Gauss' Algorithm and Limitations
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Gauss' algorithm (over Z)

M =

(
10 7
2 2

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

rotation

b1

M =

(
10 7
2 2

)

C

Compute QR factorization

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

b1

M =

(
10.2 7.3
0 0.6

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

reduce b2 with b1

b1

M =

(
10.2 7.3
0 0.6

)

C

�Euclidean division� (over R)
of 7.3 by 10.2

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

b1

M =

(
10.2 −2.9
0 0.6

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

swap

b1

M =

(
−2.9 10.2
0.6 0

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

start again

b1

M =

(
−2.9 10.2
0.6 0

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

rotation

b1

M =

(
−2.9 10.2
0.6 0

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

rotation

b1

M =

(
3 −10
0 −2

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

reduce b2 with b1

b1

M =

(
3 −10
0 −2

)

C

�Euclidean division� (over R)
of −10 by 3

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Gauss' algorithm (over Z)

b1

M =

(
3 −1
0 −2

)

C

For Gauss' algorithm over KR, we need

rotation

⇒ ok

Euclidean division

⇒ ?
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Euclidean division

Over Z

Input: a, b ∈ Z, a 6= 0
Output: r ∈ Z
such that |b + ra| ≤ |a|/2

CVP in Z with target −b/a.

Over R

CVP in R with target −b/a
⇒ output r ∈ R

Di�culty: Typically
‖b + ra‖ ≈

√
n · ‖a‖ � ‖a‖.

Relax the requirement

Find x , y ∈ R such that

‖xa + yb‖ ≤ ‖a‖/2
‖y‖ ≤ poly(n)

⇒ su�cient for Gauss' algo
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Computing the Relaxed Euclidean Division
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Using the Log space

Objective: �nd x , y ∈ R such that

‖xa + yb‖ ≤ ‖a‖/2
‖y‖ ≤ poly(n)

Di�culty: Log works well with ×, but not with +

Solution: If ‖ Log(u)− Log(v)‖ ≤ ε
then ‖u − v‖ . ε ·min(‖u‖, ‖v‖)
(requires to extend Log to take arguments into account)

New objective

Find x , y ∈ R such that

‖ Log(xa)− Log(yb)‖ ≤ ε
‖ Log(y)‖∞ ≤ O(log n)
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Idea

Objective: �nd x , y ∈ R s.t.

‖ Log(xa)− Log(yb)‖ ≤ ε
‖ Log(y)‖∞ ≤ O(log n)

Solve exact CVP in L with target t

with an oracle

L =


Λ Log r1 · · · Log rn2
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , t =


Log(b/a)

0
0
...
0
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Applications of the extended division

Complexity of the extended division

Quantum poly(n) if we have an oracle solving CVP in L

Applications:

Mimic Gauss' algorithm with 2× 2 matrices over R

I approximation factor poly(n) for rank-2 modules

Extend the LLL algorithm to modules of rank m

I approximation factor poly(n)O(m) for rank-m modules
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Summary and other works

Many
protocols

Ideal SIVP

Many
protocols

small rank
Module SIVP

Ring LWE
[SSTX09,LPR10]

small rank
Module LWE [LS15]

most of the time

most of the time

?

[AD17]

multilinear map
and obfuscators

based on [GGH13] in many cases
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small rank
Module LWE [LS15]

most of the time

most of the time
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[AD17]

multilinear map
and obfuscators

based on [GGH13] in many cases

[GGH13] S. Garg, C. Gentry, S. Halevi. Candidate multilinear maps from ideal lattices. Eurocrypt.
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In the thesis

Ideal and Module SVP

Ideal-SVP with
pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

• rank 2

• arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet

GGH13 map and

applications

Statistical leakage
of GGH13

Asiacrypt 2018, with

L. Ducas

Quantum attack on
GGH13 based obfuscators

Crypto 2018

October 16, 2019 36/37Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map



Conclusion

Main bottleneck of our algorithms: CVP in L
(one lattice L per number �eld)

Perspectives:

understand the lattice L

I remove the heuristics?
I e�cient CVP solver for some number �elds?

varying de�ning polynomial

I same geometry but di�erent algebraic properties?

remove pre-processing/oracle?

enumeration/sieving in modules? (⇒ BKZ algorithm for modules)

Thank you
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