On Ideal Lattices and the GGH13 Multilinear Map

Alice Pellet-Mary

Under the supervision of Damien Stehlé

October 16, 2019

Cryptography and hard problems

Cryptography and hard problems

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 2/37

Cryptography and hard problems

Lattices

Lattice

A (full-rank) lattice L is a subset of \mathbb{R}^n of the form $L = \{Bx \mid x \in \mathbb{Z}^n\}$, with $B \in \mathbb{R}^{n \times n}$ invertible. B is a basis of L.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 10 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector. Its Euclidean norm is denoted λ_1 .

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 4/

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

SIVP (Shortest Independent Vectors Problem): Find *n* linearly independent short vectors.

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 4/37

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 4/3

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Hardness of lattice problems

Best Time/Approximation trade-off for SVP, CVP, SIVP (even quantumly): BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.
[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

Alice Pellet-Mary

Structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

 \Rightarrow improve efficiency using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient (storage: n^2 , matrix-vector mult: n^2) \Rightarrow improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient (storage: n^2 , matrix-vector mult: n^2) \Rightarrow improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

	Frodo (IvI 1)	Kyber (Ivl 1)
	(unstructured lattices)	(structured lattices)
secret key size (in Bytes)	19888	1 632
public key size (in Bytes)	9616	800

Structured lattices: example

$$M_{\mathbf{a}} = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

basis of a special case of ideal lattice

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 7/3

Structured lattices: example

$$M_{\mathbf{a}} = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

basis of a special case of ideal lattice basis of a special case of module lattice of rank *m*

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 7/3

Structured lattices: example

$$M_{\mathbf{a}} = \begin{pmatrix} a_1 & -a_n & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_{n-1} & \cdots & a_1 \end{pmatrix}$$

basis of a special case of ideal lattice basis of a special case of module lattice of rank *m*

Is SVP still hard when restricted to ideal/module lattices?

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 8/3

[SSTX09] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. Eurocrypt.

[LS15] A. Langlois, D. Stehlé. Worst-case to average-case reductions for module lattices. DCC.

Alice Pellet-Mary

[[]SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt.

[SSTX09] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. Eurocrypt.

[LS15] A. Langlois, D. Stehlé. Worst-case to average-case reductions for module lattices. DCC.

Alice Pellet-Mary

[[]SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt.

[SSTX09] V. Lyubashevsky, C. Peikert, O. Regev. On ideal lattices and learning with errors over rings. Eurocrypt.

[LS15] A. Langlois, D. Stehlé. Worst-case to average-case reductions for module lattices. DCC.

Alice Pellet-Mary

[[]SSTX09] D. Stehlé, R. Steinfeld, K. Tanaka, K. Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt.

[AD17] M. Albrecht, A. Deo. Large modulus ring-LWE \geq module-LWE. Asiacrypt.

Alice Pellet-Mary

Ideal-SVP with pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

- rank 2
- arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 9/3

Previous Works and Results

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 10/3

[RBV04]: algorithm for principal ideal lattices of small dimension

[RBV04] G. Rekaya, J.-C. Belfiore, E. Viterbo. A very efficient lattice reduction tool on fast fading channels. ISITA.

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 11/3

[RBV04]: algorithm for principal ideal lattices of small dimension

[CGS14]: algorithm for principal ideal lattices in cyclotomic fields (without analysis)

[[]CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: a cautionary tale.

[RBV04]: algorithm for principal ideal lattices of small dimension

[CGS14]: algorithm for principal ideal lattices in cyclotomic fields (without analysis)

[CDPR16]: does the analysis of [CGS14] $\Rightarrow 2^{O(\sqrt{n})}$ approximation factor in quantum poly time

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering short generators of principal ideals in cyclotomic rings. Eurocrypt.

Alice Pellet-Mary

[RBV04]: algorithm for principal ideal lattices of small dimension

[CGS14]: algorithm for principal ideal lattices in cyclotomic fields (without analysis)

[CDPR16]: does the analysis of [CGS14] $\Rightarrow 2^{O(\sqrt{n})}$ approximation factor in quantum poly time [CDW17]: extends results of [CDPR16] to any ideal (in cyclotomic fields)

Alice Pellet-Mary

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

[RBV04]: algorithm for principal ideal lattices of small dimension

[CGS14]: algorithm for principal ideal lattices in cyclotomic fields (without analysis)

[CDPR16]: does the analysis of [CGS14] $\Rightarrow 2^{O(\sqrt{n})}$ approximation factor in quantum poly time

[CDW17]: extends results of [CDPR16] to any ideal (in cyclotomic fields)

[PHS19]: extends [CDW17] to obtain more trade-offs (any number field, exponential pre-processing)

[[]PHS19] A. Pellet-Mary, G. Hanrot, D. Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[Nap96] LLL for some specific number fields no bound on quality / run-time

Alice Pellet-Mary

[[]Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des nombres de Bordeaux.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields no bound on quality / run-time bound on run-time for specific number fields

[[]FP96] C. Fieker, M. E. Pohst. Lattices over number fields. ANTS.

- [Nap96] LLL for some specific number fields no bound on quality / run-time
 [FP96] LLL for any number fields no bound on quality / run-time
 - bound on run-time for specific number fields
- [FS10] forget about the module structure and do LLL in $\mathbb Z$

[[]FS10] C. Fieker, D. Stehlé. Short bases of lattices over number fields. ANTS.

- [Nap96] LLL for some specific number fields no bound on quality / run-time
- [FP96] LLL for any number fields no bound on quality / run-time bound on run-time for specific number fields
- $[\mathsf{FS10}] \qquad \text{ forget about the module structure and do LLL in } \mathbb{Z}$
- [KL17] LLL for norm-Euclidean fields bound on run-time but not on quality bound on quality for biquadratic fields

[[]KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.

LLL for some specific number fields [Nap96] no bound on quality / run-time [FP96] LLL for any number fields no bound on quality / run-time bound on run-time for specific number fields [FS10] forget about the module structure and do LLL in $\mathbb Z$ [KL17] III for norm-Euclidean fields bound on run-time but not on guality bound on guality for biguadratic fields [LPSW19] LLL for any number field bound on guality and run-time if oracle solving CVP in a fixed lattice

[LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices. To appear at Asiacrypt 2019.

Alice Pellet-Mary

October 16, 2019 12/37

Some mathematical background

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 13/3
Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
, with $n = 2^k$

(for simplicity)

Notation

$$R = \mathbb{Z}[X]/(X^n + 1)$$
, with $n = 2^k$

(for simplicity)

• Units:
$$R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$$

• e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$

Notation

$$R=\mathbb{Z}[X]/(X^n+1)$$
, with $n=2^k$

(for simplicity)

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$
- Principal ideals: $\langle g \rangle = \{gr \mid r \in R\}$ (i.e., all multiples of g)
 - $\bullet\,$ e.g. $\langle 2\rangle=\{\text{even numbers}\}$ in $\mathbb Z$
 - g is called a generator of $\langle g
 angle$
 - ullet the generators of $\langle g \rangle$ are exactly the ug for $u \in R^{\times}$

Why is $\langle g \rangle$ a lattice?

R is a lattice

$$\begin{aligned} R &= \mathbb{Z}[X]/(X^n + 1) \rightarrow \mathbb{C}^n \\ r(X) &\mapsto (r(\alpha_1), r(\alpha_2), \dots, r(\alpha_n)), \end{aligned}$$

where $\alpha_1, \dots, \alpha_n$ are the roots of $X^n + 1$ in \mathbb{C}

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Why is $\langle g \rangle$ a lattice?

R is a lattice

$$R = \mathbb{Z}[X]/(X^n + 1) \rightarrow \mathbb{C}^n$$

 $r(X) \mapsto (r(\alpha_1), r(\alpha_2), \dots, r(\alpha_n)),$

where $\alpha_1, \ldots, \alpha_n$ are the roots of $X^n + 1$ in $\mathbb C$

$$\begin{cases} \langle g \rangle \subseteq R \simeq \mathbb{Z}^n \\ \text{stable by '+' and '-'} \end{cases} \Rightarrow \text{ lattice} \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

The Log Unit Lattice and Previous Works on ideal-SVP

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 16,

 $Log: R \to \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

 $Log: R \to \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

 $Log r = h + a\mathbf{1}$, with $h \in H$

• $\operatorname{Log}(r_1 \cdot r_2) = \operatorname{Log}(r_1) + \operatorname{Log}(r_2)$

 $\mathsf{Log}: R o \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

 $Log r = h + a\mathbf{1}, \text{ with } h \in H$

•
$$\operatorname{Log}(r_1 \cdot r_2) = \operatorname{Log}(r_1) + \operatorname{Log}(r_2)$$

a ≥ 0

 $\mathsf{Log}: R o \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

 $Log r = h + a\mathbf{1}$, with $h \in H$

•
$$Log(r_1 \cdot r_2) = Log(r_1) + Log(r_2)$$

•
$$a \ge 0$$

• a = 0 iff r is a unit

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 17

 $\mathsf{Log}: R o \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

 $Log r = h + a\mathbf{1}$, with $h \in H$

•
$$\operatorname{Log}(r_1 \cdot r_2) = \operatorname{Log}(r_1) + \operatorname{Log}(r_2)$$

•
$$a \ge 0$$

The Log unit lattice

$$\Lambda := Log(R^{\times})$$
 is a lattice in H .

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

 $\mathsf{Log}: R o \mathbb{R}^n$ (take the log of every coordinate)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

 $Log r = h + a\mathbf{1}$, with $h \in H$

•
$$Log(r_1 \cdot r_2) = Log(r_1) + Log(r_2)$$

• $||r|| \simeq 2^{||\log r||_{\infty}}$

The Log unit lattice

 $\Lambda := \text{Log}(R^{\times})$ is a lattice in H.

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

What does $\mathsf{Log}\langle g
angle$ look like?

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time

Alice Pellet-Mary

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time

Alice Pellet-Mary

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - $\Rightarrow \mathsf{CVP} \text{ in poly time} \\ \Rightarrow \|h\| \le \widetilde{O}(\sqrt{n})$

[BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Alice Pellet-Mary

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - $\Rightarrow \mathsf{CVP} \text{ in poly time} \\ \Rightarrow \|h\| \le \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

[CGS14,CDPR16]:

- Find a generator g_1 of $\langle g
 angle$.
 - ▶ [BS16]: quantum poly time
- Solve CVP in Λ
 - Good basis of Λ (cyclotomic field)
 - $\Rightarrow \mathsf{CVP} \text{ in poly time} \\ \Rightarrow \|h\| \le \widetilde{O}(\sqrt{n})$

 $\|ug_1\| \leq 2^{\tilde{O}(\sqrt{n})} \cdot \lambda_1$

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

[[]BS16]: J.-F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields. SODA.

Getting Intermediate Trade-offs, with Pre-processing

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 19/3

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 20/37

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 20/37

Important

Log $r = h + a\mathbf{1}$ with a small (and $h \in H$).

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Important

Log $r = h + a\mathbf{1}$ with a small (and $h \in H$).

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Important

Log $r = h + a\mathbf{1}$ with a small (and $h \in H$).

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Important

Log $r = h + a\mathbf{1}$ with a small (and $h \in H$).

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Important

Log $r = h + a\mathbf{1}$ with a small (and $h \in H$).

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

The lattice L

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 21/37

The lattice L

$$L = \begin{bmatrix} \Lambda & h_{Log(r_{1})}, \cdots, h_{Log(r_{\nu})} \\ & & & \\ 1/\sqrt{n} \\ 0 & & \\$$

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 21/3

The lattice L

Heuristic

For some $\nu = \widetilde{O}(n)$, the covering radius of L satisfies $\mu(L) = O(1)$. (i.e., for all target t, there exists $s \in L$ such that ||t - s|| = O(1))

CDPRThis workGood basis of ΛNo good basis of L known

Alice Pellet-Mary On Ideal Lattices and the GGH13 Multilinear Map October 16, 2019 22/3

CDPRThis workGood basis of ΛNo good basis of L known

Key observation

L does not depend on $\langle g
angle$

CDPR	This work
Good basis of Λ	No good basis of <i>L</i> known

Key observation

L does not depend on $\langle g
angle \; \Rightarrow$ Pre-processing on L

Key observation

L does not depend on $\langle g \rangle \;\; \Rightarrow$ Pre-processing on L

[Laa16,DLW19,Ste19]: • Find
$$s \in L$$
 such that $||s - t|| = \widetilde{O}(n^{\alpha})$
• Time:
• $2^{\widetilde{O}(n^{1-2\alpha})}$ (query)
• $+ 2^{O(n)}$ (pre-processing)

[Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

[DLW19]: E. Doulgerakis, T. Laarhoven, and B. de Weger. Finding closest lattice vectors using approximate Voronoi cells. PQCRYPTO.

[Ste19]: N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing – instantiating the DLW heuristic. CCC.

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{\alpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ⁰⁽ⁿ⁾

On Ideal Lattices and the GGH13 Multilinear Map

Under the carpet

Any ideal

- ▶ unify units and class group (cf [Buc88])
- Any number field
 - ▶ the trade-offs may change with the discriminant
- Heuristics
 - maths justification
 - numerical experiments

[[]Buc88] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

Comparison with previous works

Time/Approximation trade-offs for SVP in ideal lattices:

(Figures are for prime power cyclotomic fields)

Ideal-SVP with pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

- rank 2
- arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 2

Ideal-SVP with pre-processing

Eurocrypt 2019, with

G. Hanrot and D. Stehlé

Module-SVP with oracle

- rank 2
- arbitrary rank

Asiacrypt 2019, with

C. Lee, D. Stehlé and A. Wallet

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 26

$$a, b, c, d \in R = \mathbb{Z}[X]/(X^n + 1)$$

 $a, b, c, d \in R = \mathbb{Z}[X]/(X^n + 1)$ \Rightarrow "*R*-lattice" of dimension 2

 $a, b, c, d \in R = \mathbb{Z}[X]/(X^n + 1)$ \Rightarrow "*R*-lattice" of dimension 2

Can we extend Gauss' algorithm to matrices over R?

Gauss' Algorithm and Limitations

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

rotation

 $M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$

Compute QR factorization

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

reduce b_2 with b_1

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

"Euclidean division" (over ℝ) of 7.3 by 10.2

$$M = \begin{pmatrix} 10.2 & -2.9 \\ 0 & 0.6 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

swap

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

start again

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

rotation

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

rotation

reduce b_2 with b_1

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of -10 by 3

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For Gauss' algorithm over $K_{\mathbb{R}}$, we need

- rotation
- Euclidean division

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 29

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For Gauss' algorithm over $K_{\mathbb{R}}$, we need

- rotation \Rightarrow ok
- Euclidean division \Rightarrow ?

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019 29

 $\text{Over } \mathbb{Z}$

Input: $a, b \in \mathbb{Z}, a \neq 0$ Output: $r \in \mathbb{Z}$ such that $|b + ra| \le |a|/2$

Input: $a, b \in \mathbb{Z}$, $a \neq 0$ Output: $r \in \mathbb{Z}$ such that $|b + ra| \le |a|/2$

CVP in \mathbb{Z} with target -b/a.

Input: $a, b \in \mathbb{Z}, a \neq 0$ Output: $r \in \mathbb{Z}$ such that $|b + ra| \le |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Input: $a, b \in \mathbb{Z}, a \neq 0$ Output: $r \in \mathbb{Z}$ such that $|b + ra| \le |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

 $\begin{array}{l} \mathsf{CVP} \text{ in } R \text{ with target } -b/a \\ \Rightarrow \text{ output } r \in R \end{array}$

Difficulty: Typically $\|b + ra\| \approx \sqrt{n} \cdot \|a\| \gg \|a\|.$

Input: $a, b \in \mathbb{Z}, a \neq 0$ Output: $r \in \mathbb{Z}$ such that $|b + ra| \le |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

 $\begin{array}{l} \mathsf{CVP} \text{ in } R \text{ with target } -b/a \\ \Rightarrow \text{ output } r \in R \end{array}$

Difficulty: Typically $\|b + ra\| \approx \sqrt{n} \cdot \|a\| \gg \|a\|.$

Relax the requirement

Find $x, y \in R$ such that

•
$$||xa + yb|| \le ||a||/2$$

•
$$||y|| \leq \operatorname{poly}(n)$$

 \Rightarrow sufficient for Gauss' algo

Computing the Relaxed Euclidean Division

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \le \operatorname{poly}(n)$

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa+yb|| \leq ||a||/2$
- $||y|| \le \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

Solution: If
$$\| \text{Log}(u) - \text{Log}(v) \| \le \varepsilon$$

then $\|u - v\| \le \varepsilon \cdot \min(\|u\|, \|v\|)$
(requires to extend Log to take arguments into account)

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa+yb|| \leq ||a||/2$
- $||y|| \le \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

Solution: If
$$\|Log(u) - Log(v)\| \le \varepsilon$$

then $\|u - v\| \le \varepsilon \cdot \min(\|u\|, \|v\|)$
(requires to extend Log to take arguments into account)

New objective

Find $x, y \in R$ such that

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \leq \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Objective: find $x, y \in R$ s.t.

- $\| \log(xa) \log(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Objective: find $x, y \in R$ s.t.

- $\| \log(xa) \log(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Idea

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Idea

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Solve exact CVP in L with target t

$$L = \begin{pmatrix} \Lambda & \log r_1 & \cdots & \log r_n^2 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \ t = \begin{pmatrix} \log(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Idea

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} \Lambda & \log r_1 & \cdots & \log r_n^2 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \ t = \begin{pmatrix} \log(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Complexity of the extended division

Quantum poly(n) if we have an oracle solving CVP in L

Complexity of the extended division

Quantum poly(n) if we have an oracle solving CVP in L

Applications:

- ullet Mimic Gauss' algorithm with 2 imes 2 matrices over R
 - approximation factor poly(n) for rank-2 modules
- Extend the LLL algorithm to modules of rank m
 - approximation factor $poly(n)^{O(m)}$ for rank-m modules

Summary and other works

[GGH13] S. Garg, C. Gentry, S. Halevi. Candidate multilinear maps from ideal lattices. Eurocrypt.

Alice Pellet-Mary

On Ideal Lattices and the GGH13 Multilinear Map

October 16, 2019

In the thesis

GGH13 map and applications Statistical leakage of GGH13 Asiacrypt 2018, with L. Ducas

Quantum attack on GGH13 based obfuscators

Crypto 2018

October 16, 2019 36/37

Main bottleneck of our algorithms: CVP in *L* (one lattice *L* per number field)

Conclusion

Main bottleneck of our algorithms: CVP in L (one lattice L per number field)

Perspectives:

- understand the lattice L
 - remove the heuristics?
 - ▶ efficient CVP solver for some number fields?

Conclusion

Main bottleneck of our algorithms: CVP in L (one lattice L per number field)

Perspectives:

- understand the lattice L
 - remove the heuristics?
 - efficient CVP solver for some number fields?
- varying defining polynomial
 - same geometry but different algebraic properties?

Main bottleneck of our algorithms: CVP in *L* (one lattice *L* per number field)

Perspectives:

- understand the lattice L
 - remove the heuristics?
 - efficient CVP solver for some number fields?
- varying defining polynomial
 - same geometry but different algebraic properties?
- remove pre-processing/oracle?
- enumeration/sieving in modules? (\Rightarrow BKZ algorithm for modules)

Main bottleneck of our algorithms: CVP in *L* (one lattice *L* per number field)

Perspectives:

- understand the lattice L
 - remove the heuristics?
 - efficient CVP solver for some number fields?
- varying defining polynomial
 - same geometry but different algebraic properties?
- remove pre-processing/oracle?
- enumeration/sieving in modules? (\Rightarrow BKZ algorithm for modules)

Thank you