On the hardness of the NTRU problem

Alice Pellet-Mary ${ }^{1,2}$ and Damien Stehlé ${ }^{3}$

${ }^{1}$ Université de Bordeaux, ${ }^{2}$ CNRS, ${ }^{3}$ ENS de Lyon
Lattices: Algorithms, Complexity, and Cryptography reunion workshop

What is this talk about

Outline of the talk

(1) The different NTRU problems
(2) What we know about NTRU
(3) Techniques

Outline of the talk

(1) The different NTRU problems

NTRU instances

$R=\mathbb{Z}[X] /\left(X^{n}+1\right), \quad K=\mathbb{Q}[X] /\left(X^{n}+1\right), \quad n=2^{k}, \quad R_{q}=R /(q R)$

NTRU instance

A (γ, q)-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma} \quad$ (if $y=\sum_{i=0}^{n-1} y_{i} X^{i} \in R$, then $\|y\|:=\sqrt{\sum_{i} y_{i}^{2}}$)

The pair (f, g) is a trapdoor for h.

NTRU instances
$R=\mathbb{Z}[X] /\left(X^{n}+1\right), \quad K=\mathbb{Q}[X] /\left(X^{n}+1\right), \quad n=2^{k}, \quad R_{q}=R /(q R)$

NTRU instance

A (γ, q)-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma} \quad$ (if $y=\sum_{i=0}^{n-1} y_{i} x^{i} \in R$, then $\|y\|:=\sqrt{\sum_{i} y_{i}^{2}}$)

The pair (f, g) is a trapdoor for h.

Claim: if (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same h,

$$
\left.\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad \text { (division performed in } K\right)
$$

Decisional NTRU problem

dNTRU

The (γ, q)-decisional NTRU problem ((γ, q)-dNTRU) asks, given $h \in R_{q}$, to decide whether

- $h \leftarrow \mathcal{D}$ where \mathcal{D} is a distribution over (γ, q)-NTRU instances
- $h \leftarrow \mathcal{U}\left(R_{q}\right)$

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The $\left(\gamma, \gamma^{\prime}, q\right)$-search NTRU vector problem ($\left(\gamma, \gamma^{\prime}, q\right)$-NTRU Nec) asks, given a (γ, q)-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma^{\prime} \quad\left(\gamma^{\prime} \leq \gamma\right)$

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The $\left(\gamma, \gamma^{\prime}, q\right)$-search NTRU vector problem $\left(\left(\gamma, \gamma^{\prime}, q\right)\right.$-NTRU Nec) asks, given a (γ, q)-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma^{\prime} \quad\left(\gamma^{\prime} \leq \gamma\right)$

$\mathrm{NTRU}_{\text {mod }}$

The (γ, q)-search NTRU module problem ((γ, q)-NTRU $\mathrm{Nod}_{\text {m }}$) asks, given a (γ, q)-NTRU instance h, to recover h_{K}. (Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))
(The two problems exist in worst-case and average-case variants)

NTRU is a (module) lattice problem

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$
\Lambda(h)=\left\{(g, f)^{T} \in R^{2} \mid g h=f \bmod q\right\}
$$

Fact: $\Lambda(h)$ has basis $B_{h}=\left(\begin{array}{ll}1 & 0 \\ h & q\end{array}\right) \quad$ (in columns)

NTRU is a (module) lattice problem

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$
\Lambda(h)=\left\{(g, f)^{T} \in R^{2} \mid g h=f \bmod q\right\}
$$

Fact: $\Lambda(h)$ has basis $B_{h}=\left(\begin{array}{ll}1 & 0 \\ h & q\end{array}\right) \quad$ (in columns)

- Gaussian heuristic: $\lambda_{1}(\Lambda(h)) \approx \sqrt{q}\left(\right.$ if $\left.h \leftarrow \mathcal{U}\left(R_{q}\right)\right)$

NTRU is a (module) lattice problem

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$
\Lambda(h)=\left\{(g, f)^{T} \in R^{2} \mid g h=f \bmod q\right\}
$$

Fact: $\Lambda(h)$ has basis $B_{h}=\left(\begin{array}{ll}1 & 0 \\ h & q\end{array}\right) \quad$ (in columns)

- Gaussian heuristic: $\lambda_{1}(\Lambda(h)) \approx \sqrt{q}$ (if $\left.h \leftarrow \mathcal{U}\left(R_{q}\right)\right)$
- $\Lambda(h)$ has an unexpectedly short vector $\leq \sqrt{q} / \gamma$
- $\mathrm{NTRU}_{\mathrm{vec}}$ asks to recover (a short multiple of) the short vector

NTRU is a (module) lattice problem

NTRU lattice

The NTRU (module) lattice associated to an NTRU instance h is

$$
\Lambda(h)=\left\{(g, f)^{T} \in R^{2} \mid g h=f \bmod q\right\}
$$

Fact: $\Lambda(h)$ has basis $B_{h}=\left(\begin{array}{ll}1 & 0 \\ h & q\end{array}\right) \quad$ (in columns)

- Gaussian heuristic: $\lambda_{1}(\Lambda(h)) \approx \sqrt{q}$ (if $\left.h \leftarrow \mathcal{U}\left(R_{q}\right)\right)$
- $\Lambda(h)$ has an unexpectedly short vector $\leq \sqrt{q} / \gamma$
- $\mathrm{NTRU}_{\text {vec }}$ asks to recover (a short multiple of) the short vector
- $\Lambda(h)$ has an unexpectedly dense sub-lattice (sub-module) of rank n
- NTRU ${ }_{\text {mod }}$ asks to recover the dense sub-lattice (sub-module)

Outline of the talk

(1) The different NTRU problems
(2) What we know about NTRU

Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \bmod q \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$

[^0]
Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \bmod q \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[Pei16] dNTRU \leq RLWE

Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \bmod q \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[Pei16] \quad dNTRU \leq RLWE

Attacks: (polynomial time)
[LLL82] dNTRU, NTRU ${ }_{\text {mod }}$ broken if $\gamma \geq 2^{n}$
NTRU $_{\text {vec }}$ broken if $\gamma \geq 2^{n} \cdot \gamma^{\prime}$

Previous works

Reductions:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \bmod q \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- dNTRU is provably hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[Pei16] \quad dNTRU \leq RLWE

Attacks: (polynomial time)
[LLL82] dNTRU, NTRU mod broken if $\gamma \geq 2^{n}$ NTRU $_{\text {vec }}$ broken if $\gamma \geq 2^{n} \cdot \gamma^{\prime}$
[ABD16, CLJ16] dNTRU, NTRU $\operatorname{Nod}_{\text {mod }}$ broken if $(\log q)^{2} \geq n \cdot \log \frac{\sqrt{q}}{\gamma}$
[KF17]
(e.g., $q \approx 2^{\sqrt{n}}$ and $\gamma=\sqrt{q} / \operatorname{poly}(n)$)

[^1]
Our results

Worst-case γ-id-SVP: given any ideal lattice $I \subset R($ for instance $I=\{g r \mid r \in R\})$, find $v \in I \backslash\{0\}$ such that $\|v\| \leq \gamma \cdot \min _{w \in ハ \backslash\{0\}}\|w\|$.

Our results

Remarks

- $a \approx b \Leftrightarrow a=\operatorname{poly}(n) \cdot b$ (cyclotomic/NTRUPrime fields)
- the reductions only work for certain distributions of NTRU instances
- the constraint $\frac{\sqrt{q}}{\gamma_{4}} \geq 2^{n}$ can be relaxed if the run time is increased

Worst-case γ-id-SVP: given any ideal lattice $I \subset R($ for instance $I=\{g r \mid r \in R\})$, find $v \in I \backslash\{0\}$ such that $\|v\| \leq \gamma \cdot \min _{w \in 八 \backslash\{0\}}\|w\|$.

One big picture: poly time attacks and reductions (cyclotomics)

\square dNTRU
unconditionnally hard
\square dNTRU^{2} and NTRU $_{\text {mod }}$ easy

One big picture: poly time attacks and reductions (cyclotomics)

\square dNTRU
unconditionnally hard
$\because \mathrm{dNTRU}=\mathrm{NTRU}_{\text {mod }}$
\square $\mathrm{dNTRU}^{\text {and }}$ NTRU $_{\text {mod }}$ easy

One big picture: poly time attacks and reductions (cyclotomics)

\square dNTRU
unconditionnally hard \square w.c. id-SVP $\leq \mathrm{NTRU}_{\mathrm{vec}}$
\square dNTRU and NTRU ${ }_{\text {mod }}$ easy \square w.c. id-SVP \leq NTRU $_{\text {vec }}$ quantumly, for cyclotomic fields

Outline of the talk

(1) The different NTRU problems
(2) What we know about NTRU
(3) Techniques

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=q / z, f=0$
- $\|f\|,\|g\|$ small

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \quad(r \in R) \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=q / z, f=0$
- $\|f\|,\|g\|$ small
$/!\backslash$ Not an NTRU instance $\left(h \in K\right.$ is not in $\left.R_{q}\right)$

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \quad(r \in R) \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & \left.g \cdot \left\lvert\, \frac{q}{z}\right.\right\rceil=-g \cdot\left\{\frac{q}{z}\right\} \bmod q \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=\lfloor q / z\rceil, f=-g\{q / z\}$
- $\|f\| \approx\|g\|$ small

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$

Objective: Transform an ideal I into an NTRU instance h

- $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$
- g short vector of I

$$
\begin{aligned}
& g=z \cdot r \quad(r \in R) \\
\Leftrightarrow & g \cdot \frac{q}{z}=q r \\
\Leftrightarrow & g \cdot\left\lfloor\frac{q}{z} \left\lvert\,=-g \cdot\left\{\frac{q}{z}\right\} \bmod q\right.\right. \\
\Leftrightarrow & g \cdot h=f \bmod q
\end{aligned}
$$

- $h=\lfloor q / z\rceil, f=-g\{q / z\}$
- $\|f\| \approx\|g\|$ small

This is an NTRU instance ($h \in K$ is not in R_{q})

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}(2)$

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from $/$
- any short $g \in I$ provides a trapdoor (f, g) for h

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}(2)$

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from /
- any short $g \in I$ provides a trapdoor (f, g) for h

What we need to conclude the reduction:

- any trapdoor $\left(f^{\prime}, g^{\prime}\right)$ for h is such that $g^{\prime} \in I$
- g^{\prime} solution to ideal-SVP in I

From ideal-SVP to $\mathrm{NTRU}_{\text {vec }}$ (2)

Summing up: If $I=\langle z\rangle=\{z \cdot r \mid r \in R\}$ and z known

- can construct an NTRU instance h from /
- any short $g \in I$ provides a trapdoor (f, g) for h

What we need to conclude the reduction:

- any trapdoor $\left(f^{\prime}, g^{\prime}\right)$ for h is such that $g^{\prime} \in I$
- g^{\prime} solution to ideal-SVP in I
- for general ideals, $I=R \cap\langle z\rangle$ and z easily computed
- everything still works with this z

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES is $h=f / g \bmod q$, with f, g small $(\leq B)$
- NO otherwise

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES is $h=f / g \bmod q$, with f, g small $(\leq B)$
- NO otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not

From NTRU $_{\text {mod }}$ to dNTRU

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle: given $h \in R_{q}$, outputs

- YES is $h=f / g \bmod q$, with f, g small $(\leq B)$
- NO otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not
\Rightarrow we can choose x and y
\Rightarrow we can modify the coordinates one by one

From NTRU $\mathrm{mod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

From NTRU $\mathrm{Nod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

- can only learn f / g (not f and g)
- can assume $g=1$

From NTRU $\mathrm{mod}_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not.
Objective: recover f / g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

- can only learn f / g (not f and g)
- can assume $g=1$

Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0}=B$
- (Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says NO)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1}=B$

From NTRU ${ }_{\text {mod }}$ to dNTRU (2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not.
Objective: recover f / g

Remark: if f, g, B all multiplied by $\alpha \in \mathbb{R}$, same behavior

- can only learn f / g (not f and g)
- can assume $g=1$

Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0}=B$
- (Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says NO)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1}=B$

We obtain: $x_{0} f+y_{0}=x_{1} f+y_{1}$, i.e., $f=\frac{y_{1}-y_{0}}{x_{0}-x_{1}}$

Some things I did not mention

For ideal-SVP to NTRU ${ }_{\text {vec }}$:

worst-case
ideal-SVP

[BDPW20] de Boer, Ducas, Pellet-Mary, and Wesolowski. Random Self-reducibility of Ideal-SVP via Arakelov Random Walks. Crypto.

Some things I did not mention

For ideal-SVP to NTRU ${ }_{\text {vec }}$:

```
worst-case
ideal-SVP
```

[BDPW20]

For dNTRU to NTRU \bmod :

We do not have a perfect oracle

- need to handle distributions
- use the "oracle hidden center" framework [PRS17]
[PRS17] Peikert, Regev, and Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and modulus. STOC.

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate NTRU $_{\text {mod }}$ and ideal-SVP?
- maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
- for instance, uSVP in modules of rank-2?

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we relate NTRU $_{\text {mod }}$ and ideal-SVP?
- maybe not since any "natural reduction" would provide new attacks
- Can we prove reduction from module problems with rank ≥ 2 ?
- for instance, uSVP in modules of rank-2?

> Questions?

[^0]: [SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

[^1]: [ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto. [CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.
 [KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

