Theoretical hardness of NTRU

Alice Pellet-Mary

RISC seminar

CWI, Amsterdam

université ${ }^{\text {eB BORDEAUX }}$

Context: NTRU

NTRU (N -th degree truncated polynomial ring units)

- algorithmic problem based on lattices
- supposedly hard even with a quantum computer
- efficient
- used in post-quantum crypto: e.g., Falcon, NTRU and NTRUPrime
- old (for lattice-based crypto): introduced in 1996

Outline of the talk

(1) Defining NTRU
(2) NTRU is a module lattice problems
(3) Reductions
(4) Attacks
(5) One open problem I like

Defining NTRU

Some definitions

If you like number fields

If you don't

- $R=\mathbb{Z}$
- $K=\mathbb{Q}$
- $q \in \mathbb{Z}, q \geq 2$
- $R_{q}=\mathbb{Z} / q \mathbb{Z}$
$\Rightarrow\|a\|=|a| \quad(a \in R)$

Many NTRU variants

- search vs decision

Many NTRU variants

- search vs decision
- worst-case vs average case

Many NTRU variants

- search vs decision
- worst-case vs average case
- short vector vs dense sub-lattice

Many NTRU variants

- search vs decision
- worst-case vs average case
- short vector vs dense sub-lattice

In this talk: only worst-case variants (3 variants in total)

NTRU instances

NTRU instance
A γ-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair (f, g) is a trapdoor for h.

NTRU instances

NTRU instance
A γ-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair (f, g) is a trapdoor for h.

Claim: if (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same h,

$$
\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad(\text { division performed in } K)
$$

NTRU instances

NTRU instance
A γ-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair (f, g) is a trapdoor for h.

Claim: if (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same h,

$$
\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad(\text { division performed in } K)
$$

Proof: $\quad \frac{f}{g}=\frac{f^{\prime}}{g^{\prime}} \bmod q \Rightarrow f g^{\prime}=f^{\prime} g \bmod q \Rightarrow g^{\prime}=f^{\prime} g \quad \Rightarrow \quad \frac{f}{g}=\frac{f^{\prime}}{g^{\prime}}$

Decisional NTRU problem

(worst-case) decision NTRU

The γ-decisional NTRU problem asks, given $h \in R_{q}$, to decide whether

- h is a γ-NTRU instance (i.e., $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$)
- or not

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The γ-search NTRU vector problem (γ-NTRU vec $)$ asks, given a γ-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$

Search NTRU problems

$\mathrm{NTRU}_{\text {vec }}$

The γ-search NTRU vector problem (γ-NTRU vec $)$ asks, given a γ-NTRU instance h, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$

NTRU $\mathrm{m}_{\text {mod }}$

The γ-search NTRU module problem (γ-NTRU $\mathrm{Nod}_{\text {mod }}$) asks, given a γ-NTRU instance h, to recover h_{K}.
(Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))
\Leftrightarrow recover $(\alpha f, \alpha g)$ for any $\alpha \in K$

Remark: NTRU with large f and g

If $\|f\|,\|g\| \geq \sqrt{q} \cdot \operatorname{poly}(n):$

- still an interesting regime (useful for crypto)
- decision-NTRU is provably hard [SS11]
- $\mathrm{NTRU}_{\text {mod }}$ does not make sens anymore
- different problem from a geometric point of view

Remark: NTRU with large f and g

If $\|f\|,\|g\| \geq \sqrt{q} \cdot \operatorname{poly}(n)$:

- still an interesting regime (useful for crypto)
- decision-NTRU is provably hard [SS11]
- $\mathrm{NTRU}_{\text {mod }}$ does not make sens anymore
- different problem from a geometric point of view
\rightsquigarrow we do not consider this regime here

NTRU is a module lattice problems

Module lattices

For this talk: pretend all modules are free
(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$,
where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

Module lattices

For this talk: pretend all modules are free
(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$,
where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent
Properties:

- k is the rank of M

Module lattices

For this talk: pretend all modules are free
(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$, where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

Properties:

- k is the rank of M
- rank-1 module $=$ ideal

Module lattices

For this talk: pretend all modules are free
(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$, where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

Properties:

- k is the rank of M
- rank-1 module $=$ ideal
- $\sigma(M)$ is a lattice of rank $k n$, where

$$
\begin{aligned}
\sigma: K=\mathbb{Q}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{Q}^{n} \\
\sum_{i=0}^{n-1} a_{i} X^{i} & \mapsto\left(a_{0}, \cdots, a_{n-1}\right)
\end{aligned}
$$

$\sigma(M)$ is a module lattice

Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- N lattice L with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- N lattice L with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ($N=n k$)

- 1 short vector in $L \Rightarrow n$ short vectors in L

Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- N lattice L with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ($N=n k$)

- 1 short vector in $L \Rightarrow n$ short vectors in L

If $s \in M$ is small, then $\boldsymbol{b}_{i}=X^{i} \cdot s \in M$ satisfies

- $\left\|\boldsymbol{b}_{i}\right\|=\|s\|$
- $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n-1}$ are \mathbb{Z}-linearly independent

Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- N lattice L with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ($N=n k$)

- 1 short vector in $L \Rightarrow n$ short vectors in L

If $s \in M$ is small, then $\boldsymbol{b}_{i}=X^{i} \cdot s \in M$ satisfies

- $\left\|\boldsymbol{b}_{i}\right\|=\|s\|$
- $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n-1}$ are \mathbb{Z}-linearly independent
- 1 exceptionally short vector in L
\Rightarrow an exceptionally dense rank- n sublattice (rank-1 submodule)
mod-uSVP instances (in rank 2)
From now on: all modules have rank 2

mod-uSVP instance

A module unique SVP instance (γ-mod-uSVP) is $\boldsymbol{B} \in K^{2 \times 2}$, basis of a rank-2 module M, s.t.

$$
\lambda_{1}(M) \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$

NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

h is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

h is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

Proof of \Rightarrow : assume $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$
Define M_{h} rank- 2 module spanned by B_{h}

- $(g, f)^{T} \in M_{h} \Rightarrow \lambda_{1}\left(M_{h}\right) \leq \sqrt{2 q} / \gamma$
- $\operatorname{det}\left(M_{h}\right)=q^{n} \Rightarrow \operatorname{det}\left(M_{h}\right)^{1 /(2 n)}=\sqrt{q}$
$\Rightarrow \boldsymbol{B}_{h}$ is a $(\gamma / \sqrt{2})$-mod-uSVP instance

NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

h is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

Proof of \Rightarrow : assume $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$
Define M_{h} rank-2 module spanned by \boldsymbol{B}_{h}

- $(g, f)^{T} \in M_{h} \Rightarrow \lambda_{1}\left(M_{h}\right) \leq \sqrt{2 q} / \gamma$
- $\operatorname{det}\left(M_{h}\right)=q^{n} \Rightarrow \operatorname{det}\left(M_{h}\right)^{1 /(2 n)}=\sqrt{q}$
$\Rightarrow \boldsymbol{B}_{h}$ is a $(\gamma / \sqrt{2})$-mod-uSVP instance
Proof of \Leftarrow : similar, but requires a slightly more general definition of NTRU $(g h=f \bmod q$ instead of $h=f / g \bmod q)$

mod-uSVP problems

mod-uSVP ${ }_{\text {vec }}$

The γ-mod-uSVP vector problem (γ-mod-uSVP ${ }_{\text {vec }}$) asks, given a γ-mod-uSVP instance \boldsymbol{B} spanning a module M, to recover $\boldsymbol{s} \in M$ s.t.

$$
\|\boldsymbol{s}\| \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$

mod-uSVP problems

mod-uSVP ${ }_{\text {vec }}$

The γ-mod-uSVP vector problem (γ-mod-uSVP ${ }_{\text {vec }}$) asks, given a γ-mod-uSVP instance \boldsymbol{B} spanning a module M, to recover $\boldsymbol{s} \in M$ s.t.

$$
\|\boldsymbol{s}\| \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)} .
$$

mod-uSVP mod

The γ-mod-uSVP module problem (γ-mod-uSVP \bmod) asks, given a γ-mod-uSVP instance \boldsymbol{B} spanning a module M, to recover $\boldsymbol{v} \in M$ s.t.

$$
\operatorname{det}(R \cdot \boldsymbol{v})^{1 / n} \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$

($R \cdot v$ is a dense rank- 1 submodule of M)

NTRU is a mod-uSVP (2)

$\mathrm{NTRU}_{\text {vec }}=$ mod-uSVP $\mathrm{vec}_{\text {vec }}$ restricted to NTRU modules

NTRU is a mod-uSVP (2)

$\mathrm{NTRU}_{\text {vec }}=$ mod-uSVP vec restricted to NTRU modules

$\mathrm{NTRU}_{\text {mod }}=$ mod-uSVP $\mathrm{mod}_{\text {mod }}$ restricted to NTRU modules

Reductions

Known reductions

SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$
ideal-SVP: Given $\langle z\rangle$, find $z r \in\langle z\rangle$ such that $\|z r\|$ is small (recall: $\|a\|=\sqrt{\sum_{i}\left|a_{i}\right|^{2}}$ if $a=\sum_{i} a_{i} X^{i}$)

SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$
ideal-SVP: Given $\langle z\rangle$, find $z r \in\langle z\rangle$ such that $\|z r\|$ is small (recall: $\|a\|=\sqrt{\sum_{i}\left|a_{i}\right|^{2}}$ if $a=\sum_{i} a_{i} X^{i}$)

Remark: $a \mid b \nRightarrow\|a\| \leq\|b\|$
smallness for divisibility is different from smallness for Euclidean norm

Known reductions

[PS21] Pellet-Mary and Stehlé. On the hardness of the NTRU problem. Asiacrypt.

Known reductions

[^0]
Proof: from mod-uSVP ${ }_{\text {vec }}$ to $\mathrm{NTRU}_{\text {vec }}$

Reminder and objective

mod-uSVP ${ }_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

$\mathrm{NTRU}_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

with $h \in R($ and $q \in \mathbb{Z})$.

In both cases, promise that there exists an exceptionally short vector

Reminder and objective

```
mod-uSVP
```

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

$\mathrm{NTRU}_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

with $h \in R($ and $q \in \mathbb{Z})$.

In both cases, promise that there exists an exceptionally short vector

Strategy: transform input \boldsymbol{B} into some \boldsymbol{B}_{h} with \approx the same geometry

Reminder and objective

mod-uSVP ${ }_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

NTRU $_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

with $h \in R($ and $q \in \mathbb{Z})$.

In both cases, promise that there exists an exceptionally short vector

Strategy: transform input \boldsymbol{B} into some \boldsymbol{B}_{h} with \approx the same geometry
Limitation: we will use an ideal-SVP oracle (ok because we have a reduction ideal-SVP \rightarrow NTRU $_{\text {vec }}$)

Step 1: HNF

Input: M_{0}
$M_{1}=M_{0}$
\downarrow
$\left(\begin{array}{cc}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$
$\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & b_{22}^{\prime}\end{array}\right)$

Module unchanged \Rightarrow geometry unchanged

Step 2: ideal-SVP

$$
M_{1} \quad\left|\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right)\right|
$$

Step 2: ideal-SVP

$M_{1}\left|\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & b_{22}^{\prime}\end{array}\right)\right| \begin{gathered}\text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\ \text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n)\end{gathered}$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 / n} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver

Step 2: ideal-SVP

$$
\begin{array}{c|c}
M_{1} \\
M_{2} \subseteq M_{1} & \left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right) \\
\downarrow & \left.\begin{array}{c}
\text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\
\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & s
\end{array}\right)
\end{array} \right\rvert\, \begin{array}{c}
\text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n) \\
\downarrow
\end{array} \\
\left(s \in\left\langle b_{22}^{\prime}\right\rangle \Rightarrow M_{2} \subseteq M_{1}\right)
\end{array}
$$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 / n} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver

Step 2: ideal-SVP

$$
\begin{array}{c|c|c}
M_{1} \\
M_{2} \subseteq M_{1} & \left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right) & \left.\begin{array}{c}
\text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\
\downarrow \\
\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & s
\end{array}\right)
\end{array} \right\rvert\, \begin{array}{c}
\text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n) \\
\downarrow
\end{array} \\
\left(s \in\left\langle b_{22}^{\prime}\right\rangle \Rightarrow M_{2} \subseteq M_{1}\right)
\end{array}
$$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 / n} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver

$$
\lambda_{1}\left(M_{2}\right) \leq \lambda_{1}\left(M_{1}\right) \cdot \operatorname{poly}(n) \text { and } \quad \operatorname{det}\left(M_{2}\right)^{1 /(2 n)} \geq \operatorname{det}\left(M_{1}\right)^{1 /(2 n)}
$$

(provided $\left.q \approx \operatorname{det}\left(M_{1}\right)^{1 / n}\right)$

Step 3: distortion

| 2 |
| :--- | :--- | \left\lvert\,\(\quad\left(\begin{array}{cc}1 \& 0

b_{21}^{\prime} \& s\end{array}\right) \quad s=q+\varepsilon \quad(\|\varepsilon\| \leq q / n)\right.\)

Step 3: distortion

M_{2}			
$M_{3} \approx M_{2}$	$\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & s\end{array}\right)$		
\downarrow			
$\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} \cdot q / s & q\end{array}\right)$	$s=q+\varepsilon(\\|\varepsilon\\| \leq q / n)$ distort (second coordinate $\left.\times q / s \approx 1+\frac{1}{n}\right)$ \downarrow		

Step 3: distortion

M_{2}	$\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} & s \end{array}\right)$	$\begin{aligned} & \quad s=q+\varepsilon \quad(\\|\varepsilon\\| \leq q / n) \\ & \text { distort (second coordinate } \times q / s \approx 1+\frac{1}{n} \text {) } \end{aligned}$
$M_{3} \approx M_{2}$	$\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} \cdot q / s & q \end{array}\right)$	round
$M_{4} \approx M_{3}$	$\left(\begin{array}{cc}1 & 0 \\ \left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil & q\end{array}\right)$	$h=\left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil \in R$

Step 3: distortion

M_{2}	$\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} & s \end{array}\right)$	$\begin{gathered} s=q+\varepsilon \quad(\\|\varepsilon\\| \leq q / n) \\ \text { distort (second coordinate } \times q / s \approx 1+\frac{1}{n} \text {) } \end{gathered}$
$M_{3} \approx M_{2}$	$\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} \cdot q / s & q \end{array}\right)$	round
$M_{4} \approx M_{3}$	$\left(\begin{array}{cc}1 & 0 \\ \left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil & q\end{array}\right)$	$h=\left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil \in R$

$M_{4} \approx M_{2}$ is still a mod-uSVP instance

$$
\stackrel{+}{\boldsymbol{B}_{4} \text { has NTRU shape }}
$$

Attacks

Two kind of lattice attacks

We describe only attacks on decision NTRU here.
NTRU instance: $\|f\|,\|g\| \leq \sqrt{q} / \gamma=: b$

Two kind of lattice attacks

We describe only attacks on decision NTRU here.
NTRU instance: $\|f\|,\|g\| \leq \sqrt{q} / \gamma=: b$
Standard lattice attack (BKZ):

$$
\text { time } \approx \exp \left(\frac{n}{\log \gamma}\right)
$$

Two kind of lattice attacks

We describe only attacks on decision NTRU here.
NTRU instance: $\|f\|,\|g\| \leq \sqrt{q} / \gamma=: b$
Standard lattice attack (BKZ):

$$
\text { time } \approx \exp \left(\frac{n}{\log \gamma}\right)
$$

Kirchner-Fouque attack [KF17]:

$$
\text { time } \approx \exp \left(\frac{n \cdot \log b}{(\log q)^{2}}\right)
$$

Two kind of lattice attacks

We describe only attacks on decision NTRU here.
NTRU instance: $\|f\|,\|g\| \leq \sqrt{q} / \gamma=: b$

Standard lattice attack (BKZ):

$$
\text { time } \approx \exp \left(\frac{n}{\log \gamma}\right)
$$

Kirchner-Fouque attack [KF17]:

$$
\text { time } \approx \exp \left(\frac{n \cdot \log b}{(\log q)^{2}}\right)
$$

Picture

\square dNTRU
unconditionnally hard

\square dNTRU

One open problem I like

The case of SVP

Finding short vectors in modules of rank k.
$k=1$: can exploit S-units and do better than BKZ
$k \geq 2$: do not know how to do (significantly) better than BKZ

The case of SVP

Finding short vectors in modules of rank k.
$k=1$: can exploit S-units and do better than BKZ
$k \geq 2$: do not know how to do (significantly) better than BKZ

Ideals may be weaker than modules of rank $k \geq 2$

The case of uSVP

Solving uSVP in modules of rank k
$k=1$: does not make sens

The case of uSVP

Solving uSVP in modules of rank k
$k=1$: does not make sens
$k=2:$ Kirchner-Fouque-like attacks \rightsquigarrow better than BKZ (?)

The case of uSVP

Solving uSVP in modules of rank k
$k=1$: does not make sens
$k=2:$ Kirchner-Fouque-like attacks \rightsquigarrow better than BKZ (?)
$k=3$: nothing (significantly) better than BKZ (?)

- RLWE reduces to uSVP in modules of rank 3

The case of uSVP

Solving uSVP in modules of rank k
$k=1$: does not make sens
$k=2:$ Kirchner-Fouque-like attacks \rightsquigarrow better than BKZ (?)
$k=3$: nothing (significantly) better than BKZ (?)

- RLWE reduces to uSVP in modules of rank 3

Can we relate uSVP in rank k to SVP in rank $k-1$?

The case of uSVP

Solving uSVP in modules of rank k
$k=1$: does not make sens
$k=2:$ Kirchner-Fouque-like attacks \rightsquigarrow better than BKZ (?)
$k=3$: nothing (significantly) better than BKZ (?)

- RLWE reduces to uSVP in modules of rank 3

Can we relate uSVP in rank k to SVP in rank $k-1$?

Thank you

[^0]: [PS21] Pellet-Mary and Stehlé. On the hardness of the NTRU problem. Asiacrypt.

