# NTRU vs (more) standard lattice problems 

Alice Pellet-Mary<br>based on joint works with Joël Felderhoff and Damien Stehlé

London-ish Lattice Coding \& Crypto Meetings

# université <br> ceBORDEAUX 

## Context: NTRU

## NTRU ( N -th degree truncated polynomial ring units)

- algorithmic problem based on lattices
- supposedly hard even with a quantum computer
- efficient
- used in post-quantum crypto: e.g., Falcon, NTRU and NTRUPrime
- old (for lattice-based crypto): introduced in 1996


## Context: Ring / Module LWE

## Ring LWE and Module LWE <br> (Ring / Module Learning With Errors)

- algorithmic problem based on lattices
- supposedly hard even with a quantum computer
- efficient
- used in post-quantum crypto: e.g., Dilithium, Saber and Kyber
- more recent: introduced in 2009


## NTRU vs Ring LWE

- both are efficient
- both are versatile (but Ring LWE a bit more)
- NTRU is older


## NTRU vs Ring LWE

- both are efficient
- both are versatile (but Ring LWE a bit more)
- NTRU is older
- Ring LWE has stronger theoretical security guarantees (reductions)



## NTRU

## Some definitions

## If you like number fields

If you don't

- $R=\mathbb{Z}$
- $K=\mathbb{Q}$
- $q \in \mathbb{Z}, q \geq 2$
- $R_{q}=\mathbb{Z} / q \mathbb{Z}$
$\Rightarrow\|a\|=|a| \quad(a \in R)$


## Many NTRU variants

- search vs decision


## Many NTRU variants

- search vs decision
- worst-case vs average case


## Many NTRU variants

- search vs decision
- worst-case vs average case
- short vector vs dense sub-lattice


## Many NTRU variants

- search vs decision
- worst-case vs average case
- short vector vs dense sub-lattice

In this talk: only worst-case variants (3 variants in total)

## NTRU instances

NTRU instance
A $\gamma$-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair $(f, g)$ is a trapdoor for $h$.

## NTRU instances

NTRU instance
A $\gamma$-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair $(f, g)$ is a trapdoor for $h$.

Claim: if $(f, g)$ and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same $h$,

$$
\left.\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad \text { (division performed in } K\right)
$$

## NTRU instances

NTRU instance
A $\gamma$-NTRU instance is $h \in R_{q}$ s.t.

- $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
- $\|f\|,\|g\| \leq \frac{\sqrt{ } 9}{\gamma}$

The pair $(f, g)$ is a trapdoor for $h$.

Claim: if $(f, g)$ and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same $h$,

$$
\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad(\text { division performed in } K)
$$

Proof: $\quad \frac{f}{g}=\frac{f^{\prime}}{g^{\prime}} \bmod q \Rightarrow f g^{\prime}=f^{\prime} g \bmod q \Rightarrow g^{\prime}=f^{\prime} g \quad \Rightarrow \quad \frac{f}{g}=\frac{f^{\prime}}{g^{\prime}}$

## Decisional NTRU problem

## (worst-case) decision NTRU

The $\gamma$-decisional NTRU problem asks, given $h \in R_{q}$, to decide whether

- $h$ is a $\gamma$-NTRU instance (i.e., $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$ )
- or not


## Search NTRU problems

## $\mathrm{NTRU}_{\text {vec }}$

The $\gamma$-search NTRU vector problem ( $\gamma$-NTRU vec $)$ asks, given a $\gamma$-NTRU instance $h$, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$


## Search NTRU problems

## $\mathrm{NTRU}_{\text {vec }}$

The $\gamma$-search NTRU vector problem ( $\gamma$-NTRU vec $)$ asks, given a $\gamma$-NTRU instance $h$, to recover $(f, g) \in R^{2}$ s.t.

- $h=f / g \bmod q$
- $\|f\|,\|g\| \leq \sqrt{q} / \gamma$


## NTRU $\mathrm{m}_{\text {mod }}$

The $\gamma$-search NTRU module problem ( $\gamma$-NTRU $\mathrm{Nod}_{\text {mod }}$ ) asks, given a $\gamma$-NTRU instance $h$, to recover $h_{K}$.
(Recall $h_{K}=f / g \in K$ for any trapdoor $(f, g)$ )
$\Leftrightarrow$ recover $(\alpha f, \alpha g)$ for any $\alpha \in K$

## How do they compare?



## How do they compare?



# Proof: from NTRU ${ }_{\text {mod }}$ to decision NTRU 



## Reducing NTRU $\mathrm{mod}_{\text {mod }}$ to decision NTRU (1/2)

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle for decision NTRU:
given $h^{\prime} \in R_{q}$, the oracle outputs

- YeS if $h^{\prime}=f^{\prime} / g^{\prime} \bmod q$, with $\left\|f^{\prime}\right\|,\left\|g^{\prime}\right\| \leq B(=\sqrt{q} / \gamma)$
- no otherwise


## Reducing NTRU $\mathrm{mod}_{\text {mod }}$ to decision NTRU $(1 / 2)$

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle for decision NTRU:
given $h^{\prime} \in R_{q}$, the oracle outputs

- YES if $h^{\prime}=f^{\prime} / g^{\prime} \bmod q$, with $\left\|f^{\prime}\right\|,\left\|g^{\prime}\right\| \leq B(=\sqrt{q} / \gamma)$
- no otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on $h^{\prime}$
- learn whether $\|x f+y g\| \leq B$ or not


## Reducing NTRU $\mathrm{mod}_{\text {mod }}$ to decision NTRU $(1 / 2)$

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K($ division in $K)$
Can use an oracle for decision NTRU:
given $h^{\prime} \in R_{q}$, the oracle outputs

- YES if $h^{\prime}=f^{\prime} / g^{\prime} \bmod q$, with $\left\|f^{\prime}\right\|,\left\|g^{\prime}\right\| \leq B(=\sqrt{q} / \gamma)$
- no otherwise

Idea:

- take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on $h^{\prime}$
- learn whether $\|x f+y g\| \leq B$ or not
$\Rightarrow$ we can choose $x$ and $y$
$\Rightarrow$ we can modify the coordinates one by one
(uses canonical embedding here)


## Reducing NTRU mod to decision NTRU (2/2)

## Simplified problem

$f, g \in \mathbb{R}$ secret, $B^{\prime} \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B^{\prime}$ or not. Objective: recover $f / g$

## Reducing NTRU mod to decision NTRU (2/2)

## Simplified problem

$f, g \in \mathbb{R}$ secret, $B^{\prime} \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B^{\prime}$ or not. Objective: recover $f / g$

Algorithm:

- Find $x_{0}, y_{0}$ such that $x_{0} f+y_{0} g=B^{\prime}$
(Fix $x_{0} \ll B^{\prime} /|f|$ and increase $y_{0}$ until the oracle says no)


## Reducing NTRU mod to decision NTRU (2/2)

## Simplified problem

$f, g \in \mathbb{R}$ secret, $B^{\prime} \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B^{\prime}$ or not. Objective: recover $f / g$

Algorithm:

- Find $x_{0}, y_{0}$ such that $x_{0} f+y_{0} g=B^{\prime}$
(Fix $x_{0} \ll B^{\prime} /|f|$ and increase $y_{0}$ until the oracle says no)
- Find $x_{1}, y_{1}$ such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B^{\prime}$


## Reducing NTRU $\mathrm{Nod}_{\text {mod }}$ to decision NTRU (2/2)

## Simplified problem

$f, g \in \mathbb{R}$ secret, $B^{\prime} \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B^{\prime}$ or not.
Objective: recover $f / g$

Algorithm:

- Find $x_{0}, y_{0}$ such that $x_{0} f+y_{0} g=B^{\prime}$
(Fix $x_{0} \ll B^{\prime} /|f|$ and increase $y_{0}$ until the oracle says no)
- Find $x_{1}, y_{1}$ such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B^{\prime}$
- Solve for $f / g$


## What about average case?

In the average case: the decision NTRU oracle is not perfect

- yes if $h \leftarrow \mathcal{D}$ for some distribution $\mathcal{D}$ over NTRU instances
- wo if $h \leftarrow \mathcal{U}\left(R_{q}\right)$ (uniform in $R_{q}$ )


## What about average case?

In the average case: the decision NTRU oracle is not perfect

- yes if $h \leftarrow \mathcal{D}$ for some distribution $\mathcal{D}$ over NTRU instances
- wo if $h \leftarrow \mathcal{U}\left(R_{q}\right)$ (uniform in $R_{q}$ )

In this case:
We use the "oracle hidden center" framework [PRS17]

## What about average case?

In the average case: the decision NTRU oracle is not perfect

- yes if $h \leftarrow \mathcal{D}$ for some distribution $\mathcal{D}$ over NTRU instances
- no if $h \leftarrow \mathcal{U}\left(R_{q}\right)$ (uniform in $R_{q}$ )

In this case:
We use the "oracle hidden center" framework [PRS17]

- we continuously transform $\mathcal{D}$ into $\mathcal{U}\left(R_{q}\right)$
- need to prove that the continuous transformation behaves nicely (lipschitz,...)
- then call [PRS17]

Where are we?


NTRU vs ideal lattice problems

## SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

## SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

For this talk: pretend all ideals are principal and computing generators is easy
(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text { ) }
$$

## SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

For this talk: pretend all ideals are principal and computing generators is easy
(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text { ) }
$$

ideal-SVP: Given $\langle z\rangle$, find $a \in\langle z\rangle$ such that $\|a\|$ is small (recall: $\|a\|=\sqrt{\sum_{i}\left|a_{i}\right|^{2}}$ if $a=\sum_{i} a_{i} X^{i}$ )

## SVP in ideal lattices

$$
\text { Recall: } R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad(\text { or } R=\mathbb{Z})
$$

For this talk: pretend all ideals are principal and computing generators is easy
(Principal) Ideals: $I=\langle z\rangle=\{z r \mid r \in R\}$

$$
\text { (e.g., }\langle 2\rangle=\{2 x \mid x \in \mathbb{Z}\} \text { ) }
$$

ideal-SVP: Given $\langle z\rangle$, find $a \in\langle z\rangle$ such that $\|a\|$ is small (recall: $\|a\|=\sqrt{\sum_{i}\left|a_{i}\right|^{2}}$ if $a=\sum_{i} a_{i} X^{i}$ )

Remark: $x \mid y \nRightarrow\|x\| \leq\|y\|$
smallness for divisibility is different from smallness for Euclidean norm

## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\bmod }$



## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\bmod }$



## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\text {mod }}$ : proof

Objective: given $h_{k} \in K$ with the promise that $\exists(f, g) \in R^{2}$ with $h_{K}=f / g$ and $\|f\|,\|g\| \leq B$, recover one such pair $(f, g)$.

## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\text {mod }}$ : proof

Objective: given $h_{k} \in K$ with the promise that $\exists(f, g) \in R^{2}$ with $h_{K}=f / g$ and $\|f\|,\|g\| \leq B$, recover one such pair $(f, g)$.

Algorithm:

- Recover large $\left(f^{\prime}, g^{\prime}\right) \in R^{2}$ with $h_{K}=f^{\prime} / g^{\prime}$


## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\text {mod }}$ : proof

Objective: given $h_{k} \in K$ with the promise that $\exists(f, g) \in R^{2}$ with $h_{K}=f / g$ and $\|f\|,\|g\| \leq B$, recover one such pair $(f, g)$.

Algorithm:

- Recover large $\left(f^{\prime}, g^{\prime}\right) \in R^{2}$ with $h_{K}=f^{\prime} / g^{\prime}$
- Compute $\delta=\operatorname{gcd}\left(f^{\prime}, g^{\prime}\right)$ and $f^{\prime \prime}=f^{\prime} / \delta, g^{\prime \prime}=g^{\prime} / \delta$ ( $f^{\prime \prime}$ and $g^{\prime \prime}$ are small for divisibility, but not for Euclidean norm)


## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\text {mod }}$ : proof

Objective: given $h_{k} \in K$ with the promise that $\exists(f, g) \in R^{2}$ with $h_{K}=f / g$ and $\|f\|,\|g\| \leq B$, recover one such pair $(f, g)$.

## Algorithm:

- Recover large $\left(f^{\prime}, g^{\prime}\right) \in R^{2}$ with $h_{K}=f^{\prime} / g^{\prime}$
- Compute $\delta=\operatorname{gcd}\left(f^{\prime}, g^{\prime}\right)$ and $f^{\prime \prime}=f^{\prime} / \delta, g^{\prime \prime}=g^{\prime} / \delta$ ( $f^{\prime \prime}$ and $g^{\prime \prime}$ are small for divisibility, but not for Euclidean norm)
- Define $z=\left|f^{\prime \prime}\right|+\left|g^{\prime \prime}\right|$ and solve SVP in $\langle z\rangle$
$\Rightarrow$ find $r \in R$ s.t. $\|r \cdot z\|$ small


## From $\mathrm{NTRU}_{\text {vec }}$ to $\mathrm{NTRU}_{\text {mod }}$ : proof

Objective: given $h_{k} \in K$ with the promise that $\exists(f, g) \in R^{2}$ with $h_{K}=f / g$ and $\|f\|,\|g\| \leq B$, recover one such pair $(f, g)$.

## Algorithm:

- Recover large $\left(f^{\prime}, g^{\prime}\right) \in R^{2}$ with $h_{K}=f^{\prime} / g^{\prime}$
- Compute $\delta=\operatorname{gcd}\left(f^{\prime}, g^{\prime}\right)$ and $f^{\prime \prime}=f^{\prime} / \delta, g^{\prime \prime}=g^{\prime} / \delta$ ( $f^{\prime \prime}$ and $g^{\prime \prime}$ are small for divisibility, but not for Euclidean norm)
- Define $z=\left|f^{\prime \prime}\right|+\left|g^{\prime \prime}\right|$ and solve SVP in $\langle z\rangle$
$\Rightarrow$ find $r \in R$ s.t. $\|r \cdot z\|$ small
- Output $\left(r \cdot f^{\prime \prime}, r \cdot g^{\prime \prime}\right)$


## NTRU vs ideal-SVP



## NTRU vs ideal-SVP



## NTRU vs ideal-SVP



NTRU $_{\text {mod }}$ and ideal-SVP seem incomparable

NTRU vs module lattice problems

## Module lattices

(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$,
where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

## Module lattices

(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$,
where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent
Properties:

- $k$ is the rank of $M$


## Module lattices

(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$, where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

Properties:

- $k$ is the rank of $M$
- rank-1 module $=$ ideal


## Module lattices

(free) Module: $M=\left\{\sum_{i=1}^{k} x_{i} \cdot \boldsymbol{b}_{i} \mid x_{i} \in R\right\}$, where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{k} \in K^{k}$ are linearly independent

Properties:

- $k$ is the rank of $M$
- rank-1 module $=$ ideal
- $\sigma(M)$ is a lattice of rank $k n$, where

$$
\begin{aligned}
\sigma: K=\mathbb{Q}[X] /\left(X^{n}+1\right) & \rightarrow \mathbb{Q}^{n} \\
& \sum_{i=0}^{n-1} a_{i} X^{i}
\end{aligned} \mapsto\left(a_{0}, \cdots, a_{n-1}\right)
$$

$\sigma(M)$ is a module lattice

## Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- $N$ lattice $L$ with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

## Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- $N$ lattice $L$ with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ( $N=n k$ )

- 1 short vector in $L \Rightarrow n$ short vectors in $L$


## Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- $N$ lattice $L$ with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ( $N=n k$ )

- 1 short vector in $L \Rightarrow n$ short vectors in $L$

If $s \in M$ is small, then $\boldsymbol{b}_{i}=X^{i} \cdot s \in M$ satisfies

- $\left\|\boldsymbol{b}_{i}\right\|=\|s\|$
- $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n-1}$ are $\mathbb{Z}$-linearly independent


## Modules with exceptionally short vectors

unique-SVP (uSVP): input is a rank- $N$ lattice $L$ with

$$
\lambda_{1}(L) \ll \operatorname{det}(L)^{1 / N}
$$

Special case of module: if $L=\sigma(M)$ is a module-lattice ( $N=n k$ )

- 1 short vector in $L \Rightarrow n$ short vectors in $L$

If $s \in M$ is small, then $\boldsymbol{b}_{i}=X^{i} \cdot s \in M$ satisfies

- $\left\|\boldsymbol{b}_{i}\right\|=\|s\|$
- $\boldsymbol{b}_{0}, \ldots, \boldsymbol{b}_{n-1}$ are $\mathbb{Z}$-linearly independent
- 1 exceptionally short vector in $L$
$\Rightarrow$ an exceptionally dense rank- $n$ sublattice (rank-1 submodule)
mod-uSVP instances (in rank 2)
From now on: all modules have rank 2


## mod-uSVP instance

A module unique SVP instance ( $\gamma$-mod-uSVP) is $\boldsymbol{B} \in K^{2 \times 2}$, basis of a rank-2 module $M$, s.t.

$$
\left\|\lambda_{1}(M)\right\| \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$



## NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

$h$ is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

## NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

$h$ is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

Proof of $\Rightarrow$ : assume $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$
Define $M_{h}$ rank- 2 module spanned by $B_{h}$

- $(g, f)^{T} \in M_{h} \Rightarrow \lambda_{1}\left(M_{h}\right) \leq \sqrt{2 q} / \gamma$
- $\operatorname{det}\left(M_{h}\right)=q^{n} \Rightarrow \operatorname{det}\left(M_{h}\right)^{1 /(2 n)}=\sqrt{q}$
$\Rightarrow \boldsymbol{B}_{h}$ is a $(\gamma / \sqrt{2})$-mod-uSVP instance


## NTRU is a mod-uSVP

NTRU lattice: For $h \in R$, define

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right) \quad \text { (in columns) }
$$

$h$ is an NTRU instance $\Leftrightarrow \boldsymbol{B}_{h}$ is a mod-uSVP instance

Proof of $\Rightarrow$ : assume $h=f / g \bmod q$ with $\|f\|,\|g\| \leq \sqrt{q} / \gamma$
Define $M_{h}$ rank-2 module spanned by $\boldsymbol{B}_{h}$

- $(g, f)^{T} \in M_{h} \Rightarrow \lambda_{1}\left(M_{h}\right) \leq \sqrt{2 q} / \gamma$
- $\operatorname{det}\left(M_{h}\right)=q^{n} \Rightarrow \operatorname{det}\left(M_{h}\right)^{1 /(2 n)}=\sqrt{q}$
$\Rightarrow \boldsymbol{B}_{h}$ is a $(\gamma / \sqrt{2})$-mod-uSVP instance
Proof of $\Leftarrow$ : similar, but requires a slightly more general definition of NTRU $(g h=f \bmod q$ instead of $h=f / g \bmod q)$


## mod-uSVP problems

## mod-uSVP $P_{\text {vec }}$

The $\gamma$-mod-uSVP vector problem ( $\gamma$-mod-uSVP ${ }_{\text {vec }}$ ) asks, given a $\gamma$-mod-uSVP instance $\boldsymbol{B}$ spanning a module $M$, to recover $\boldsymbol{s} \in M$ s.t.

$$
\|\boldsymbol{s}\| \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$

## mod-uSVP problems

## mod-uSVP ${ }_{\text {vec }}$

The $\gamma$-mod-uSVP vector problem ( $\gamma$-mod-uSVP ${ }_{\text {vec }}$ ) asks, given a $\gamma$-mod-uSVP instance $\boldsymbol{B}$ spanning a module $M$, to recover $\boldsymbol{s} \in M$ s.t.

$$
\|\boldsymbol{s}\| \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)} .
$$

## mod-uSVP mod

The $\gamma$-mod-uSVP module problem ( $\gamma$-mod-uSVP $\bmod$ ) asks, given a $\gamma$-mod-uSVP instance $\boldsymbol{B}$ spanning a module $M$, to recover $\boldsymbol{v} \in M$ s.t.

$$
\operatorname{det}(R \cdot \boldsymbol{v})^{1 / n} \leq 1 / \gamma \cdot \operatorname{det}(M)^{1 /(2 n)}
$$

( $R \cdot v$ is a dense rank- 1 submodule of $M$ )

## NTRU is a mod-uSVP (2)

## $\mathrm{NTRU}_{\text {vec }}=$ mod-uSVP vec restricted to NTRU instances

## NTRU is a mod-uSVP (2)

$\mathrm{NTRU}_{\text {vec }}=$ mod-uSVP $\mathrm{vec}_{\text {vec }}$ restricted to NTRU instances
$\mathrm{NTRU}_{\text {mod }}=$ mod-uSVP $\mathrm{mod}_{\text {mod }}$ restricted to NTRU instances

## NTRU vs mod-uSVP



## NTRU vs mod-uSVP



## NTRU vs mod-uSVP



## Proof: from mod-uSVP ${ }_{\text {vec }}$ to $\mathrm{NTRU}_{\text {vec }}$



## Reminder and objective

## mod-uSVP ${ }_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

## $\mathrm{NTRU}_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

with $h \in R($ and $q \in \mathbb{Z})$.

In both cases, promise that there exists an exceptionally short vector

## Reminder and objective

```
mod-uSVP
```

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

## $\mathrm{NTRU}_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

$$
\text { with } h \in R(\text { and } q \in \mathbb{Z}) \text {. }
$$

In both cases, promise that there exists an exceptionally short vector

Strategy: transform input $\boldsymbol{B}$ into some $\boldsymbol{B}_{h}$ with $\approx$ the same geometry

## Reminder and objective

## mod-uSVP ${ }_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

with $b_{i j} \in R$.

## $\mathrm{NTRU}_{\text {vec }}$

find a short vector in rank 2 module generated by

$$
\boldsymbol{B}_{h}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

$$
\text { with } h \in R(\text { and } q \in \mathbb{Z}) \text {. }
$$

In both cases, promise that there exists an exceptionally short vector

Strategy: transform input $\boldsymbol{B}$ into some $\boldsymbol{B}_{h}$ with $\approx$ the same geometry
Limitation: we will use an ideal-SVP oracle (ok because we have a reduction ideal-SVP $\rightarrow$ NTRU $_{\text {vec }}$ )

## Step 1: HNF

| Input: $M_{0}$ |
| :---: |
|  |
| $M_{1}=M_{0}$ |
| $\downarrow$ |
| $\left(\begin{array}{cc}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ |
| $\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & b_{22}^{\prime}\end{array}\right)$ |$| \begin{gathered}\left.\text { (with good probability } \operatorname{gcd}\left(b_{11}, b_{12}\right)=1\right)\end{gathered}$

Module unchanged $\Rightarrow$ geometry unchanged

Step 2: ideal-SVP

$$
M_{1} \quad\left|\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right)\right|
$$

## Step 2: ideal-SVP

$$
\begin{array}{l|l|}
M_{1} & \left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right) \left\lvert\, \begin{array}{c}
\text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\
\text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n)
\end{array} ~\right.
\end{array}
$$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 /(2 n)} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver


## Step 2: ideal-SVP

$$
\begin{array}{c|c}
M_{1} \\
M_{2} \subseteq M_{1} & \left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right) \\
\downarrow \\
\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & s
\end{array}\right) & \text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\
\text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n) \\
\downarrow
\end{array}
$$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 /(2 n)} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver


## Step 2: ideal-SVP

$$
\begin{array}{c|c|c}
M_{1} \\
M_{2} \subseteq M_{1} & \left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right) & \left.\begin{array}{c}
\text { compute } s=r \cdot b_{22}^{\prime} \text { with } r \in R \\
\downarrow \\
\left(\begin{array}{cc}
1 & 0 \\
b_{21}^{\prime} & s
\end{array}\right)
\end{array} \right\rvert\, \begin{array}{c}
\text { s.t. } s=q+\varepsilon(\varepsilon \in R \text { and }\|\varepsilon\|<q / n) \\
\downarrow
\end{array} \\
\left(s \in\left\langle b_{22}^{\prime}\right\rangle \Rightarrow M_{2} \subseteq M_{1}\right)
\end{array}
$$

- requires $q \geq \operatorname{det}\left(M_{1}\right)^{1 /(2 n)} \cdot \operatorname{poly}(n)$
- uses an ideal-SVP solver

$$
\lambda_{1}\left(M_{2}\right) \leq \lambda_{1}\left(M_{1}\right) \cdot \operatorname{poly}(n) \quad \text { and } \quad \operatorname{det}\left(M_{2}\right)^{1 /(2 n)} \geq \operatorname{det}\left(M_{1}\right)^{1 /(2 n)}
$$

(provided $\left.q \approx \operatorname{det}\left(M_{1}\right)^{1 /(2 n)}\right)$

Step 3: distortion
$M_{2} \quad\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & s\end{array}\right) \quad s=q+\varepsilon \quad(\|\varepsilon\| \leq q / n)$

Step 3: distortion

| $M_{2}$ |  |
| :---: | :---: |
|  |  |
| $M_{3} \approx M_{2}$ | $\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} & s\end{array}\right)$ |
| $\downarrow$ |  |
| $\left(\begin{array}{cc}1 & 0 \\ b_{21}^{\prime} \cdot q / s & q\end{array}\right)$ | $s=q+\varepsilon(\\|\varepsilon\\| \leq q / n)$ <br> distort (second coordinate $\left.\times q / s \approx 1+\frac{1}{n}\right)$ <br> $\downarrow$ |

Step 3: distortion

| $M_{2}$ | $\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} & s \end{array}\right)$ | $\begin{aligned} & \quad s=q+\varepsilon \quad(\\|\varepsilon\\| \leq q / n) \\ & \text { distort (second coordinate } \times q / s \approx 1+\frac{1}{n} \text { ) } \end{aligned}$ |
| :---: | :---: | :---: |
| $M_{3} \approx M_{2}$ | $\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} \cdot q / s & q \end{array}\right)$ | round |
| $M_{4} \approx M_{3}$ | $\left(\begin{array}{cc}1 & 0 \\ \left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil & q\end{array}\right)$ | $h=\left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil \in R$ |

Step 3: distortion

| $M_{2}$ | $\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} & s \end{array}\right)$ | $\begin{gathered} s=q+\varepsilon \quad(\\|\varepsilon\\| \leq q / n) \\ \text { distort (second coordinate } \times q / s \approx 1+\frac{1}{n} \text { ) } \end{gathered}$ |
| :---: | :---: | :---: |
| $M_{3} \approx M_{2}$ | $\left(\begin{array}{cc} 1 & 0 \\ b_{21}^{\prime} \cdot q / s & q \end{array}\right)$ | round |
| $M_{4} \approx M_{3}$ | $\left(\begin{array}{cc}1 & 0 \\ \left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil & q\end{array}\right)$ | $h=\left\lfloor b_{21}^{\prime} \cdot q / s\right\rceil \in R$ |

$M_{4} \approx M_{2}$ is still a mod-uSVP instance

$$
\stackrel{+}{\boldsymbol{B}_{4} \text { has NTRU shape }}
$$

## Conclusion

## Summary



## Summary



## Summary



## What about average case?



Worst-case

## What about average case?



Average-case

## What about average case?



## What about average case?



## Open problems

## NTRU $\approx$ worst case uSVP in rank 2 modules

## Open problems

# NTRU $\approx$ worst case uSVP in rank 2 modules 

## Limitations:

- Modulus $q$ needs to be exponential for some reductions


## Open problems

$$
\text { NTRU } \approx \text { worst case uSVP in rank } 2 \text { modules }
$$

## Limitations:

- Modulus $q$ needs to be exponential for some reductions
- We do not always know how to sample from the average-case distribution


## Open problems

$$
\text { NTRU } \approx \text { worst case uSVP in rank } 2 \text { modules }
$$

## Limitations:

- Modulus $q$ needs to be exponential for some reductions
- We do not always know how to sample from the average-case distribution

Open problems:

- How hard is worst-case uSVP in modules of rank 2?
(e.g., compared to SVP / gap-SVP / SIVP in modules of rank 2, or to ideal-SVP?)
- Worst-case to average-case reduction directly for NTRU?


## Open problems

$$
\text { NTRU } \approx \text { worst case uSVP in rank } 2 \text { modules }
$$

## Limitations:

- Modulus $q$ needs to be exponential for some reductions
- We do not always know how to sample from the average-case distribution

Open problems:

- How hard is worst-case uSVP in modules of rank 2?
(e.g., compared to SVP / gap-SVP / SIVP in modules of rank 2, or to ideal-SVP?)
- Worst-case to average-case reduction directly for NTRU?

Thank you

