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Cryptography
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Cryptography

(Cryptology = ) Cryptography = science of secrets

Examples: encryption, signatures, homomorphic encryption, e-voting . . .

A cryptographic primitive is mathematically de�ned by

I some correctness properties

I some security properties

I need to model the attacker
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Encryption: symmetric

Alice Bob

s (∈ Z) s (∈ Z)

c = Enc(m, s)

(message m ∈ {0, 1})
c−−−−−−→

m′ = Dec(c , s)

Correctness:
∀m ∈ {0, 1}, Dec

(
Enc(m, s), s

)
= m

Security: (against chosen plaintext attacks)

for any polynomial time algorithm A,

Pr
m←U({0,1})

(
A
(
Enc(m, s)

)
= m

)
= 1/2+ ε

(usually require |ε| ≤ 2−128)
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Encryption: asymmetric [DH76, RSA78]

Alice Bob

pk←−−−−−−− sk , pk (∈ Z)

c = Enc(m, pk)

(message m ∈ {0, 1})
c−−−−−−→

m′ = Dec(c , sk)

Correctness:

∀m ∈ {0, 1}, Dec
(
Enc(m, pk), sk

)
= m

Security: (against chosen plaintext attacks)

for any polynomial time algorithm A,

Pr
m←U({0,1})

(
A
(
pk,Enc(m, pk)

)
= m

)
= 1/2+ ε

[DH76] Di�e, Hellman. New Directions in Cryptography.

[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.
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Security guarantees

For almost any interesting crypto primitives,
we don't know how to prove that a construction is secure

Solution: we rely on the supposed hardness of some algorithmic problems.
Ideally, we want

I few underlying problems

I that are simple to describe

Examples: factoring, discrete logarithm, . . .

De�nition: an algorithmic problem is hard if there is no algorithm solving it
in polynomial time
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Foundation of asymmetric cryptography

Cryptographic primitives

asymmetric
encryption

signature
homomorphic
encryption

. . .

(Supposedly hard) algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .
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My research: classify lattice problems

Lattice
problem 1

Lattice
problem 2

Lattice
problem 3

Lattice
problem 4

Lattice
problem 1

Lattice
problem 2

Lattice
problem 4

Lattice
problem 3

Lattice
problem 1

Lattice
problem 2

Lattice
problem 4

≤

Tools:

I algorithms

I number theory

I a little programming
(just toy examples)
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Lattices and algorithmic problems
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Lattices

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

•
0

L

I L = {Bx | x ∈ Zn} is a lattice

I B ∈ GLn(R) is a basis

I n is the dimension of L
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Representing a lattice

Representation of a lattice L:
a basis B ∈ Zn×n of L

Di�culty:

I the basis B is not unique

I some choices of B may render some
algorithmic problems easier

Solution: take the Hermite Normal Form
(HNF) of any B

I it is unique (HNF(B) = HNF(B ′))

I it is e�ciently computable

⇒ canonical representation of L
(i.e., worse basis ever)

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

•
0

L

B

B ′

HNF(B) = HNF(B ′)
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Algorithmic problems

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

•
0

L

λ1 SVP

• t•
CVP

SVP : Shortest Vector Problem CVP : Closest Vector Problem
(input: HNF basis of L) (input: HNF basis of L and target t)

Supposedly hard to solve when n is large
(even with a quantum computer)
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How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity 2c·n+o(n)

(for some c ≈ 0.292, or c ≈ 0.265 for quantum computers [Laa15])

⇒ not polynomial

In practice:

I n = 2  easy, very e�cient in practice

I up to n = 60 or n = 80  a few minutes on a personal laptop

I up to n = 180  few days on big computers with good code [DSW21]

I from n = 500 to n = 1000  cryptography

[Laa15] Laarhoven. Search problems in cryptography.

[DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.
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The zoo of lattice problems

Exact solution vs Approximation
I �nd a shortest vector I �nd a vector ≤ γ

Search vs Decision
I �nd a short vector I decide whether there is

a vector of length ≤ t

Worst-case vs Average-case
I �nd a short vector in any I �nd a short vector with good

possible input lattice L probability (when L is random)

Plain lattices vs Algebraic lattice
I �nd a short vector I �nd a short vector

in a lattice over Z in a lattice over OK

(ring of integers of number �eld K)
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Digression: building cryptography from lattices
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Asymmetric encryption from lattices

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Bs

Bp

•x

Enc(0)

Enc(1)
•
v

pk = (Bp, x)
sk = Bs

message: m ∈ {0, 1}

Encryption(m, pk):

I sample random v ∈ L

I sample small e ∈ Rn

I return c = v + e +m · x

Decryption(c, sk):

I �nd w ∈ L closest to c

I if c is very close to w ,
return m = 0

I otherwise return m = 1
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Correctness and security

Theorem

The encryption construction is correct and secure assuming that the
problem decision-CVP is hard.

decision-CVP: given the HNF basis of L and a target t, decide whether t is
close to a point of L or not.
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The LLL algorithm
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Objective

The LLL algorithm

I runs in polynomial time

I �nds a vector v ∈ L with ‖v‖2 ≤ 2n · λ1(L) (λ1(L) = minw∈L
w 6=0
‖w‖2)

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coe�cients.
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Dimension 2: Lagrange-Gauss algorithm

video

Theorem: the algorithm

I �nds a shortest vector of L

I runs in polynomial time
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Larger dimension: LLL algorithm

Input: basis B = (b1, . . . , bn)

Main idea: improve the basis locally on blocks of dimension 2
(using Lagrange-Gauss algorithm)

Algorithm:

I while there exist i such that ‖bi‖2 > λ1(Li )
(Li lattice spanned by (bi , bi+1))

I run Lagrange-Gauss on Li

This algorithm

I �nds v ∈ L with ‖v‖2 ≤ 2n · λ1(L)

I does not run in polynomial time
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Larger dimension: LLL algorithm

Input: basis B = (b1, . . . , bn)

Main idea: improve the basis locally on blocks of dimension 2
(using Lagrange-Gauss algorithm)

Algorithm:

I while there exist i such that ‖bi‖2 > 4/3 · λ1(Li )
(Li lattice spanned by (bi , bi+1))

I run Lagrange-Gauss on Li

This algorithm

I �nds v ∈ L with ‖v‖2 ≤ 2n · λ1(L)
I runs in polynomial time
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LLL over a number �eld?

Can we adapt LLL to lattices over OK?

For LLL we need:

I QR factorization ⇒ ok

I Euclidean division ⇒ not ok (OK is usually not Euclidean)

(Partial) solution: use pseudo-euclidean division
(|au + bv | < 1/2 · |a| and |v | not too big instead of |au + v | < 1/2 · |a|)

I the LLL algorithm still works with pseudo-division

I computing the pseudo-division is super costly

⇒ we obtain LLL over OK but not polynomial time anymore

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.
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Conclusion

Take-away: crypto is fun!
(It is a good way to do nice math and have founding)

Advertisement:

I we are hiring a 2 years post-doc working on algebraic lattices
(geometry of numbers, ideals in numbers �elds, automorphic forms)

I concours Alkindi
(Tip: very useful to keep a �stagiaire de 3eme� busy for a few hours)

Thank you
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