Euclidean lattices in cryptography

Alice Pellet--Mary

CNRS and Université de Bordeaux
MARGAUx PhD days
Bordeaux

Cnrs Univerisité
abordeaux

What I did until now

What I did until now

"If you want to do research, go for computer science, they have more money"
math teacher

What I did until now

"If you want to do research, go for computer science, they have more money"
math teacher

What I did until now

"If you want to do research, go for computer science, they have more money"
math teacher

What I did until now

What I did until now

Cryptography

Cryptography

$($ Cryptology $=) \quad$ Cryptography $=$ science of secrets

Examples: encryption, signatures, homomorphic encryption, e-voting ...

Cryptography

$($ Cryptology $=) \quad$ Cryptography $=$ science of secrets

Examples: encryption, signatures, homomorphic encryption, e-voting ...

A cryptographic primitive is mathematically defined by

- some correctness properties
- some security properties
> need to model the attacker

Encryption: symmetric

Alice
Bob
$s(\in \mathbb{Z})$
$s(\in \mathbb{Z})$

Encryption: symmetric

$$
\begin{gathered}
\text { Alice } \\
s(\in \mathbb{Z}) \\
c=\operatorname{Enc}(m, s) \\
\text { (message } m \in\{0,1\})
\end{gathered}
$$

Bob

Encryption: symmetric

$$
\begin{array}{cc}
\text { Alice } & \text { Bob } \\
s(\in \mathbb{Z}) & s(\in \mathbb{Z}) \\
c=\operatorname{Enc}(m, s) \\
\text { (message } m \in\{0,1\}) & \\
\hline
\end{array}
$$

Encryption: symmetric

$$
\begin{array}{ccc}
\text { Alice } & \text { Bob } \\
s(\in \mathbb{Z}) & & s(\in \mathbb{Z}) \\
c=\operatorname{Enc}(m, s) \\
\text { (message } m \in\{0,1\}) & & \\
& & m^{\prime}=\operatorname{Dec}(c, s)
\end{array}
$$

Encryption: symmetric

$$
\begin{array}{ccc}
\text { Alice } & \text { Bob } \\
s(\in \mathbb{Z}) \\
c=\operatorname{Enc}(m, s) \\
\text { (message } m \in\{0,1\}) \\
& & s(\in \mathbb{Z}) \\
& & \\
m^{\prime}=\operatorname{Dec}(c, s)
\end{array}
$$

Correctness:

$$
\forall m \in\{0,1\}, \quad \operatorname{Dec}(\operatorname{Enc}(m, s), s)=m
$$

Encryption: symmetric

$$
\begin{array}{ccc}
\text { Alice } & \text { Bob } \\
s(\in \mathbb{Z}) & & s(\in \mathbb{Z}) \\
c=\operatorname{Enc}(m, s) \\
\text { (message } m \in\{0,1\}) & & \\
& & m^{\prime}=\operatorname{Dec}(c, s)
\end{array}
$$

Correctness:

$$
\forall m \in\{0,1\}, \quad \operatorname{Dec}(\operatorname{Enc}(m, s), s)=m
$$

Security: (against chosen plaintext attacks) for any polynomial time algorithm \mathcal{A},

$$
\operatorname{Pr}_{m \leftarrow \mathcal{U}(\{0,1\})}(\mathcal{A}(\operatorname{Enc}(m, s))=m)=1 / 2+\varepsilon
$$

(usually require $|\varepsilon| \leq 2^{-128}$)

Encryption: asymmetric [DH76, RSA78]

Alice Bob

 $$
s k, p k(\in \mathbb{Z})
$$

[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Encryption: asymmetric [DH76, RSA78]

Alice Bob

$$
\text { sk, pk }(\in \mathbb{Z})
$$

$$
c=\operatorname{Enc}(m, p k)
$$

(message $m \in\{0,1\}$)
[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Encryption: asymmetric [DH76, RSA78]

Alice
 Bob

$$
\text { sk, pk }(\in \mathbb{Z})
$$

$c=\operatorname{Enc}(m, p k)$
(message $m \in\{0,1\}$)

[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Encryption: asymmetric [DH76, RSA78]

Alice
 Bob

$$
\text { sk, pk }(\in \mathbb{Z})
$$

$c=\operatorname{Enc}(m, p k)$
(message $m \in\{0,1\}$)

$$
m^{\prime}=\operatorname{Dec}(c, s k)
$$

[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Encryption: asymmetric [DH76, RSA78]

Alice
 Bob

$$
s k, p k(\in \mathbb{Z})
$$

$$
c=\operatorname{Enc}(m, p k)
$$

(message $m \in\{0,1\}$)

$$
m^{\prime}=\operatorname{Dec}(c, s k)
$$

Correctness:

$$
\forall m \in\{0,1\}, \quad \operatorname{Dec}(\operatorname{Enc}(m, p k), s k)=m
$$

[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Encryption: asymmetric [DH76, RSA78]

Alice
 Bob

$$
\longleftarrow \quad \text { sk, pk }(\in \mathbb{Z})
$$

$$
c=\operatorname{Enc}(m, p k)
$$

$$
\text { (message } m \in\{0,1\} \text {) }
$$

$$
m^{\prime}=\operatorname{Dec}(c, s k)
$$

Correctness:

$$
\forall m \in\{0,1\}, \quad \operatorname{Dec}(\operatorname{Enc}(m, p k), s k)=m
$$

Security: (against chosen plaintext attacks) for any polynomial time algorithm \mathcal{A},

$$
\operatorname{Pr}_{m \leftarrow \mathcal{U}(\{0,1\})}(\mathcal{A}(p k, \operatorname{Enc}(m, p k))=m)=1 / 2+\varepsilon
$$

[DH76] Diffie, Hellman. New Directions in Cryptography.
[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Security guarantees

For almost any interesting crypto primitives, we don't know how to prove that a construction is secure

Security guarantees

For almost any interesting crypto primitives, we don't know how to prove that a construction is secure

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- that are simple to describe

Security guarantees

For almost any interesting crypto primitives, we don't know how to prove that a construction is secure

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- that are simple to describe

Examples: factoring, discrete logarithm, ...

Security guarantees

For almost any interesting crypto primitives, we don't know how to prove that a construction is secure

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- that are simple to describe

Examples: factoring, discrete logarithm, ...

Definition: an algorithmic problem is hard if there is no algorithm solving it in polynomial time

Foundation of asymmetric cryptography

Cryptographic primitives
asymmetric encryption
signature
homomorphic encryption

```
error correcting codes lattices isogenies
    factoring discrete logarithm
    (Supposedly hard) algorithmic problems
```


Foundation of asymmetric cryptography

Cryptographic primitives
asymmetric encryption

> signature
homomorphic encryption

```
error correcting codes lattices isogenies
    factoring
    (Supposedly hard) algorithmic problems
    in a quantum world
```


Foundation of asymmetric cryptography

Cryptographic primitives
asymmetric encryption

> signature
homomorphic encryption

```
error correcting codes lattices isogenies
    factoring
    (Supposedly hard) algorithmic problems
    in a quantum world
```


My research: classify lattice problems

My research: classify lattice problems

My research: classify lattice problems

My research: classify lattice problems

$\mathrm{V} \uparrow$

Lattice problem 4

Tools:

> algorithms

- number theory
- a little programming (just toy examples)

Lattices and algorithmic problems

Lattices

- $L=\left\{B x \mid x \in \mathbb{Z}^{n}\right\}$ is a lattice
- $B \in \mathrm{GL}_{n}(\mathbb{R})$ is a basis
> n is the dimension of L

Representing a lattice

Representation of a lattice L : a basis $B \in \mathbb{Z}^{n \times n}$ of L

Representing a lattice

Representation of a lattice L :
a basis $B \in \mathbb{Z}^{n \times n}$ of L

Difficulty:

- the basis B is not unique
- some choices of B may render some algorithmic problems easier

Representing a lattice

Representation of a lattice L :
a basis $B \in \mathbb{Z}^{n \times n}$ of L

Difficulty:

- the basis B is not unique
- some choices of B may render some algorithmic problems easier

Solution: take the Hermite Normal Form (HNF) of any B
> it is unique $\left(\operatorname{HNF}(B)=\operatorname{HNF}\left(B^{\prime}\right)\right)$

- it is efficiently computable

Representing a lattice

Representation of a lattice L :
a basis $B \in \mathbb{Z}^{n \times n}$ of L

Difficulty:

> the basis B is not unique

- some choices of B may render some algorithmic problems easier

Solution: take the Hermite Normal Form (HNF) of any B
\downarrow it is unique $\left(\operatorname{HNF}(B)=\operatorname{HNF}\left(B^{\prime}\right)\right)$

- it is efficiently computable
\Rightarrow canonical representation of L (i.e., worse basis ever)

Algorithmic problems

SVP : Shortest Vector Problem (input: HNF basis of L)

CVP : Closest Vector Problem (input: HNF basis of L and target t)

Algorithmic problems

SVP : Shortest Vector Problem (input: HNF basis of L)

Supposedly hard to solve when n is large (even with a quantum computer)

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])
\Rightarrow not polynomial

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$
(for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])
\Rightarrow not polynomial

In practice:
» $n=2 \rightsquigarrow$ easy, very efficient in practice
[Laa15] Laarhoven. Search problems in cryptography.

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{\text {c.n+o(n) }}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])
\Rightarrow not polynomial

In practice:
» $n=2 \rightsquigarrow$ easy, very efficient in practice

- up to $n=60$ or $n=80 \rightsquigarrow$ a few minutes on a personal laptop
[Laa15] Laarhoven. Search problems in cryptography.

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{c \cdot n+o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])
\Rightarrow not polynomial

In practice:
» $n=2 \rightsquigarrow$ easy, very efficient in practice

- up to $n=60$ or $n=80 \rightsquigarrow$ a few minutes on a personal laptop
- up to $n=180 \rightsquigarrow$ few days on big computers with good code [DSW21]
[Laa15] Laarhoven. Search problems in cryptography.
[DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

How hard is SVP/CVP?

In theory: best algorithm has asymptotic complexity $2^{c \cdot n+o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])
\Rightarrow not polynomial

In practice:
» $n=2 \rightsquigarrow$ easy, very efficient in practice

- up to $n=60$ or $n=80 \rightsquigarrow$ a few minutes on a personal laptop
- up to $n=180 \rightsquigarrow$ few days on big computers with good code [DSW21]
- from $n=500$ to $n=1000 \rightsquigarrow$ cryptography
[Laa15] Laarhoven. Search problems in cryptography.
[DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

The zoo of lattice problems

Exact solution
VS
- find a shortest vector
\section*{Approximation}
- find a vector $\leq \gamma$

The zoo of lattice problems

Exact solution
vs
- find a shortest vector
\section*{Search}
- find a short vector
\section*{Approximation}
- find a vector $\leq \gamma$
\section*{Decision}
- decide whether there is a vector of length $\leq t$

The zoo of lattice problems

Exact solution
 - find a shortest vector

Search

- find a short vector
vs
vs
vs
> find a short vector in any possible input lattice L

Approximation

- find a vector $\leq \gamma$

Decision

- decide whether there is a vector of length $\leq t$

Average-case

- find a short vector with good probability (when L is random)

The zoo of lattice problems

Exact solution

- find a shortest vector

Search

- find a short vector
vs
vs
vs
- find a short vector in any possible input lattice L

Plain lattices

- find a short vector in a lattice over \mathbb{Z}

Approximation

- find a vector $\leq \gamma$

Decision

- decide whether there is a vector of length $\leq t$

Average-case

- find a short vector with good probability (when L is random)

Algebraic lattice

- find a short vector in a lattice over \mathcal{O}_{K} (ring of integers of number field K)

Digression: building cryptography from lattices

Asymmetric encryption from lattices

Asymmetric encryption from lattices

Asymmetric encryption from lattices

Asymmetric encryption from lattices

Correctness and security

Theorem

The encryption construction is correct and secure assuming that the problem decision-CVP is hard.
decision-CVP: given the HNF basis of L and a target t, decide whether t is close to a point of L or not.

The LLL algorithm

Objective

The LLL algorithm

- runs in polynomial time
- finds a vector $v \in L$ with $\|v\|_{2} \leq 2^{n} \cdot \lambda_{1}(L) \quad\left(\lambda_{1}(L)=\min _{\substack{w \in L \\ w \neq 0}}\|w\|_{2}\right)$

Dimension 2: Lagrange-Gauss algorithm

video

Dimension 2: Lagrange-Gauss algorithm

video

Theorem: the algorithm

- finds a shortest vector of L
- runs in polynomial time

Larger dimension: LLL algorithm

$$
\text { Input: basis } B=\left(b_{1}, \ldots, b_{n}\right)
$$

Larger dimension: LLL algorithm

$$
\text { Input: basis } B=\left(b_{1}, \ldots, b_{n}\right)
$$

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Larger dimension: LLL algorithm

Input: basis $B=\left(b_{1}, \ldots, b_{n}\right)$
Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that $\left\|b_{i}\right\|_{2}>\lambda_{1}\left(L_{i}\right)$
(L_{i} lattice spanned by $\left(b_{i}, b_{i+1}\right)$)
\downarrow run Lagrange-Gauss on L_{i}

Larger dimension: LLL algorithm

Input: basis $B=\left(b_{1}, \ldots, b_{n}\right)$
Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that $\left\|b_{i}\right\|_{2}>\lambda_{1}\left(L_{i}\right)$
(L_{i} lattice spanned by $\left(b_{i}, b_{i+1}\right)$)
\downarrow run Lagrange-Gauss on L_{i}

This algorithm
$>$ finds $v \in L$ with $\|v\|_{2} \leq 2^{n} \cdot \lambda_{1}(L)$

Larger dimension: LLL algorithm

Input: basis $B=\left(b_{1}, \ldots, b_{n}\right)$
Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that $\left\|b_{i}\right\|_{2}>\lambda_{1}\left(L_{i}\right)$
(L_{i} lattice spanned by $\left(b_{i}, b_{i+1}\right)$)
\downarrow run Lagrange-Gauss on L_{i}

This algorithm
$>$ finds $v \in L$ with $\|v\|_{2} \leq 2^{n} \cdot \lambda_{1}(L)$
> does not run in polynomial time

Larger dimension: LLL algorithm

Input: basis $B=\left(b_{1}, \ldots, b_{n}\right)$
Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that $\left\|b_{i}\right\|_{2}>4 / 3 \cdot \lambda_{1}\left(L_{i}\right)$
(L_{i} lattice spanned by $\left(b_{i}, b_{i+1}\right)$)
- run Lagrange-Gauss on L_{i}

This algorithm
$>$ finds $v \in L$ with $\|v\|_{2} \leq 2^{n} \cdot \lambda_{1}(L)$

- runs in polynomial time

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{k} is usually not Euclidean)

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{k} is usually not Euclidean)
(Partial) solution: use pseudo-euclidean division $(|a u+b v|<1 / 2 \cdot|a|$ and $|v|$ not too big instead of $\quad|a u+v|<1 / 2 \cdot|a|)$

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{k} is usually not Euclidean)
(Partial) solution: use pseudo-euclidean division
$(|a u+b v|<1 / 2 \cdot|a|$ and $|v|$ not too big instead of $\quad|a u+v|<1 / 2 \cdot|a|)$
> the LLL algorithm still works with pseudo-division $)$

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{k} is usually not Euclidean)
(Partial) solution: use pseudo-euclidean division $(|a u+b v|<1 / 2 \cdot|a|$ and $|v|$ not too big instead of $\quad|a u+v|<1 / 2 \cdot|a|)$
> the LLL algorithm still works with pseudo-division $)$
- computing the pseudo-division is super costly $)$

LLL over a number field?

Can we adapt LLL to lattices over \mathcal{O}_{K} ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{k} is usually not Euclidean)
(Partial) solution: use pseudo-euclidean division
$(|a u+b v|<1 / 2 \cdot|a|$ and $|v|$ not too big instead of $\quad|a u+v|<1 / 2 \cdot|a|)$
> the LLL algorithm still works with pseudo-division $)$
> computing the pseudo-division is super costly $\%$
\Rightarrow we obtain LLL over \mathcal{O}_{K} but not polynomial time anymore

Conclusion

Take-away: crypto is fun!
(It is a good way to do nice math and have founding)

Conclusion

Take-away: crypto is fun!
(It is a good way to do nice math and have founding)

Advertisement:

> we are hiring a 2 years post-doc working on algebraic lattices (geometry of numbers, ideals in numbers fields, automorphic forms)

- concours Alkindi
(Tip: very useful to keep a "stagiaire de 3eme" busy for a few hours)

Conclusion

Take-away: crypto is fun!
(It is a good way to do nice math and have founding)

Advertisement:

> we are hiring a 2 years post-doc working on algebraic lattices (geometry of numbers, ideals in numbers fields, automorphic forms)

- concours Alkindi
(Tip: very useful to keep a "stagiaire de 3eme" busy for a few hours)

Thank you

