Euclidean lattices in cryptography

Alice Pellet -- Mary

CNRS and Université de Bordeaux

MARGAUx PhD days

Bordeaux

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 1/24

What I did until now

computer science math computer science Leuven math	20	12 2	015 203	16 20	19 20	21
Dia luon luon (Palaium) Di	Prepa					Researcher math
Paris Lyon Lyon (Deigium) Bordeaux	Paris	Lyon	Lyon	Lyon	(Belgium)	Bordeaux

1

What I did until now

Alice Pellet-Mary

16/05/2022 2/24

Alice Pellet-Mary

16/05/2022 2/24

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 2/24

What I did until now

What I did until now

Cryptography

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 3/24

(Cryptology =) Cryptography = science of secrets

Examples: encryption, signatures, homomorphic encryption, e-voting ...

(Cryptology =) Cryptography = science of secrets

Examples: encryption, signatures, homomorphic encryption, e-voting

A cryptographic primitive is mathematically defined by

- some correctness properties
- some security properties
 - need to model the attacker

Correctness:

$$\forall m \in \{0,1\}, \ \mathsf{Dec}\left(\mathsf{Enc}(m,s),s\right) = m$$

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 5/24

Correctness:

$$\forall m \in \{0,1\}, \ \mathsf{Dec}\left(\mathsf{Enc}(m,s),s
ight) = m$$

Security: (against chosen plaintext attacks) for any polynomial time algorithm A,

$$\Pr_{m \leftarrow \mathcal{U}(\{0,1\})} \left(\mathcal{A}ig(\mathsf{Enc}(m,s) ig) = m
ight) = 1/2 + arepsilon$$

(usually require $|arepsilon| \leq 2^{-128}$)

[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

[[]DH76] Diffie, Hellman. New Directions in Cryptography.

[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

[[]DH76] Diffie, Hellman. New Directions in Cryptography.

[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

[[]DH76] Diffie, Hellman. New Directions in Cryptography.

[[]DH76] Diffie, Hellman. New Directions in Cryptography.

[[]RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Correctness:

$$\forall m \in \{0,1\}, \ \mathsf{Dec}(\mathsf{Enc}(m,pk),sk) = m$$

[[]DH76] Diffie, Hellman. New Directions in Cryptography.

[[]RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Correctness:

$$\forall m \in \{0,1\}, \ \mathsf{Dec}\left(\mathsf{Enc}(m,pk), sk\right) = m$$

$$\Pr_{m \leftarrow \mathcal{U}(\{0,1\})} \left(\mathcal{A}\big(pk, \mathsf{Enc}(m, pk) \big) = m \right) = 1/2 + \varepsilon$$

[DH76] Diffie, Hellman. New Directions in Cryptography.

[RSA78] Rivest, Shamir, Adleman. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

Alice Pellet-Mary

Euclidean lattices in cryptography

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- ▶ that are simple to describe

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- that are simple to describe

Examples: factoring, discrete logarithm,

Solution: we rely on the supposed hardness of some algorithmic problems. Ideally, we want

- few underlying problems
- that are simple to describe

Examples: factoring, discrete logarithm,

Definition: an algorithmic problem is hard if there is no algorithm solving it in polynomial time

Foundation of asymmetric cryptography

error correcting codes	lattices	isogenies				
factoring	discrete lo	garithm · · ·				
(Supposedly hard) algorithmic problems						

Foundation of asymmetric cryptography

Foundation of asymmetric cryptography

Alice Pellet-Mary

16/05/2022 9/24

Alice Pellet-Mary

16/05/2022 9/24

Tools:

- algorithms
- number theory
- a little programming (just toy examples)

Lattices and algorithmic problems

Lattices

- $L = \{Bx \mid x \in \mathbb{Z}^n\}$ is a lattice
- $B \in \operatorname{GL}_n(\mathbb{R})$ is a basis
- ▶ *n* is the dimension of *L*

Representing a lattice

Representation of a lattice *L*: a basis $B \in \mathbb{Z}^{n \times n}$ of *L*

Representing a lattice

Representation of a lattice L: a basis $B \in \mathbb{Z}^{n \times n}$ of L

Difficulty:

- ▶ the basis *B* is not unique
- some choices of B may render some algorithmic problems easier

Representing a lattice

Representation of a lattice *L*: a basis $B \in \mathbb{Z}^{n \times n}$ of *L*

Difficulty:

- ▶ the basis *B* is not unique
- some choices of B may render some algorithmic problems easier

Solution: take the Hermite Normal Form (HNF) of any *B*

- it is unique (HNF(B) = HNF(B'))
- it is efficiently computable

Representing a lattice

Representation of a lattice L: a basis $B \in \mathbb{Z}^{n \times n}$ of L

Difficulty:

- ▶ the basis *B* is not unique
- some choices of B may render some algorithmic problems easier

Solution: take the Hermite Normal Form (HNF) of any *B*

- it is unique (HNF(B) = HNF(B'))
- it is efficiently computable

 \Rightarrow canonical representation of *L* (i.e., worse basis ever)

Alice Pellet-Mary

Algorithmic problems

SVP : Shortest Vector Problem (input: HNF basis of *L*) CVP : Closest Vector Problem (input: HNF basis of *L* and target *t*)

Algorithmic problems

SVP : Shortest Vector Problem (input: HNF basis of L) CVP : Closest Vector Problem (input: HNF basis of *L* and target *t*)

Supposedly hard to solve when *n* is large

(even with a quantum computer)

In theory: best algorithm has asymptotic complexity $2^{c \cdot n + o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])

 \Rightarrow not polynomial

[Laa15] Laarhoven. Search problems in cryptography.

In theory: best algorithm has asymptotic complexity $2^{c \cdot n + o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])

\Rightarrow not polynomial

In practice:

▶ $n = 2 \rightsquigarrow$ easy, very efficient in practice

[[]Laa15] Laarhoven. Search problems in cryptography.

In theory: best algorithm has asymptotic complexity $2^{c \cdot n + o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])

\Rightarrow not polynomial

In practice:

- \blacktriangleright $n=2 \rightsquigarrow$ easy, very efficient in practice
- up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop

[[]Laa15] Laarhoven. Search problems in cryptography.

In theory: best algorithm has asymptotic complexity $2^{c \cdot n + o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])

\Rightarrow not polynomial

In practice:

- $n = 2 \rightsquigarrow$ easy, very efficient in practice
- up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop
- up to $n = 180 \rightsquigarrow$ few days on big computers with good code [DSW21]

[[]Laa15] Laarhoven. Search problems in cryptography.

[[]DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

In theory: best algorithm has asymptotic complexity $2^{c \cdot n + o(n)}$ (for some $c \approx 0.292$, or $c \approx 0.265$ for quantum computers [Laa15])

\Rightarrow not polynomial

In practice:

- $n = 2 \rightsquigarrow$ easy, very efficient in practice
- ▶ up to n = 60 or $n = 80 \rightsquigarrow$ a few minutes on a personal laptop
- up to $n = 180 \rightsquigarrow$ few days on big computers with good code [DSW21]
- from n = 500 to $n = 1000 \rightsquigarrow$ cryptography

[[]Laa15] Laarhoven. Search problems in cryptography.

[[]DSW21] Ducas, Stevens, van Woerden. Advanced Lattice Sieving on GPUs, with Tensor Cores.

Exact solution
find a shortest vector

VS

Approximation • find a vector $\leq \gamma$

Exact solution ► find a shortest vector	VS	Approximation ► find a vector ≤
Search	vs	Decision
▶ find a short vector		decide whether a vector of leng

her there is

Exact solution	V
find a shortest vector	
Search	ν
find a short vector	
NA7 -	
Worst-case	v

▶ find a short vector in any possible input lattice L

- Approximation • find a vector $\leq \gamma$
- Decision

S

'S

'S

► decide whether there is a vector of length ≤ t

Average-case

▶ find a short vector with good probability (when L is random)

Exact solution find a shortest vector 	vs
Search ▶ find a short vector	VS
Worst-case ▶ find a short vector in any possible input lattice L	VS
Plain lattices ► find a short vector in a lattice over 7	vs

Approximation ▶ find a vector $\leq \gamma$

Decision

decide whether there is a vector of length < t

Average-case

▶ find a short vector with good probability (when L is random)

Algebraic lattice

▶ find a short vector in a lattice over \mathcal{O}_{κ} (ring of integers of number field K)

Digression: building cryptography from lattices

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 16/24

 $pk = (B_p, x)$ $sk = B_s$

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 17/24

 $\begin{array}{l} \mathrm{pk} = (B_p, x) \\ \mathrm{sk} = B_s \end{array}$

message: $m \in \{0, 1\}$

Alice Pellet-Mary

Euclidean lattices in cryptography

16/05/2022 17/24

 $\begin{array}{l} \mathrm{pk} = (B_{p}, x) \\ \mathrm{sk} = B_{s} \end{array}$

message: $m \in \{0,1\}$

Encryption(m, pk):

- sample random $v \in L$
- \blacktriangleright sample small $e \in \mathbb{R}^n$
- $\blacktriangleright \quad \text{return } c = v + e + m \cdot x$

 $pk = (B_p, x)$ $sk = B_s$

message: $m \in \{0,1\}$

Encryption(m, pk):

- sample random $v \in L$
- ▶ sample small $e \in \mathbb{R}^n$

• return $c = v + e + m \cdot x$

Decryption(c, sk):

- find $w \in L$ closest to c
- ▶ if c is very close to w, return m = 0

otherwise return m = 1

Theorem

The encryption construction is correct and secure assuming that the problem decision-CVP is hard.

decision-CVP: given the HNF basis of L and a target t, decide whether t is close to a point of L or not.

The LLL algorithm

Alice Pellet-Mary

16/05/2022 19/24

The LLL algorithm

- runs in polynomial time
- ▶ finds a vector $v \in L$ with $\|v\|_2 \leq 2^n \cdot \lambda_1(L)$ $(\lambda_1(L) = \min_{\substack{w \in L \\ w \neq 0}} \|w\|_2)$

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients.

Alice Pellet-Mary

Dimension 2: Lagrange-Gauss algorithm

video

Dimension 2: Lagrange-Gauss algorithm

video

Theorem: the algorithm

- ▶ finds a shortest vector of L
- runs in polynomial time

Larger dimension: LLL algorithm

Input: basis $B = (b_1, \ldots, b_n)$

Larger dimension: LLL algorithm

Input: basis $B = (b_1, \ldots, b_n)$

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist *i* such that $||b_i||_2 > \lambda_1(L_i)$ (L_i lattice spanned by (b_i, b_{i+1}))
 - \blacktriangleright run Lagrange-Gauss on L_i

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that ||b_i||₂ > λ₁(L_i) (L_i lattice spanned by (b_i, b_{i+1}))
 - run Lagrange-Gauss on L_i

This algorithm

• finds $v \in L$ with $\|v\|_2 \leq 2^n \cdot \lambda_1(L)$

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that ||b_i||₂ > λ₁(L_i) (L_i lattice spanned by (b_i, b_{i+1}))
 - run Lagrange-Gauss on L_i

This algorithm

- finds $v \in L$ with $\|v\|_2 \leq 2^n \cdot \lambda_1(L)$
- does not run in polynomial time

Main idea: improve the basis locally on blocks of dimension 2 (using Lagrange-Gauss algorithm)

Algorithm:

- while there exist i such that ||b_i||₂ > 4/3 ⋅ λ₁(L_i) (L_i lattice spanned by (b_i, b_{i+1}))
 - run Lagrange-Gauss on L_i

This algorithm

- finds $v \in L$ with $\|v\|_2 \leq 2^n \cdot \lambda_1(L)$
- runs in polynomial time

Can we adapt LLL to lattices over $\mathcal{O}_{\mathcal{K}}$?

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Alice Pellet-Mary

Can we adapt LLL to lattices over \mathcal{O}_K ?

For LLL we need:

▶ QR factorization \Rightarrow ok

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Alice Pellet-Mary

Can we adapt LLL to lattices over \mathcal{O}_K ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok ($\mathcal{O}_{\mathcal{K}}$ is usually not Euclidean)

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Alice Pellet-Mary

Can we adapt LLL to lattices over $\mathcal{O}_{\mathcal{K}}$?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{κ} is usually not Euclidean)

(Partial) solution: use pseudo-euclidean division $(|au + bv| < 1/2 \cdot |a| \text{ and } |v| \text{ not too big} \text{ instead of } |au + v| < 1/2 \cdot |a|)$

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Can we adapt LLL to lattices over \mathcal{O}_K ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok ($\mathcal{O}_{\mathcal{K}}$ is usually not Euclidean)

(Partial) solution: use pseudo-euclidean division $(|au + bv| < 1/2 \cdot |a| \text{ and } |v| \text{ not too big} \text{ instead of } |au + v| < 1/2 \cdot |a|)$

▶ the LLL algorithm still works with pseudo-division 😊

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Alice Pellet-Mary

Can we adapt LLL to lattices over \mathcal{O}_K ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{κ} is usually not Euclidean)

(Partial) solution: use pseudo-euclidean division $(|au + bv| < 1/2 \cdot |a| \text{ and } |v| \text{ not too big} \text{ instead of } |au + v| < 1/2 \cdot |a|)$

- ▶ the LLL algorithm still works with pseudo-division 😊
- computing the pseudo-division is super costly 😔

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Can we adapt LLL to lattices over \mathcal{O}_K ?

For LLL we need:

- QR factorization \Rightarrow ok
- Euclidean division \Rightarrow not ok (\mathcal{O}_{κ} is usually not Euclidean)

(Partial) solution: use pseudo-euclidean division $(|au + bv| < 1/2 \cdot |a| \text{ and } |v| \text{ not too big} \text{ instead of } |au + v| < 1/2 \cdot |a|)$

- ▶ the LLL algorithm still works with pseudo-division 😊
- computing the pseudo-division is super costly S

 \Rightarrow we obtain LLL over $\mathcal{O}_{\mathcal{K}}$ but not polynomial time anymore

[LPSW19] Lee, Pellet-Mary, Stehlé, Wallet. An LLL algorithm for module lattices.

Conclusion

Take-away: crypto is fun!

(It is a good way to do nice math and have founding)

Alice Pellet-Mary

Take-away: crypto is fun!

(It is a good way to do nice math and have founding)

Advertisement:

- we are hiring a 2 years post-doc working on algebraic lattices (geometry of numbers, ideals in numbers fields, automorphic forms)
- concours Alkindi

(Tip: very useful to keep a "stagiaire de 3eme" busy for a few hours)

Take-away: crypto is fun!

(It is a good way to do nice math and have founding)

Advertisement:

- we are hiring a 2 years post-doc working on algebraic lattices (geometry of numbers, ideals in numbers fields, automorphic forms)
- concours Alkindi

(Tip: very useful to keep a "stagiaire de 3eme" busy for a few hours)

Thank you