Cryptography, hard problems and algorithmic number theory

Alice Pellet-Mary

CNRS et Université de Bordeaux
Présentation scientifique dans le cadre du DOR 2023

cnrs

université
 da BORDEAUX

Public key cryptography

Cryptographic primitives

public key encryption
signature
homomorphic encryption

Public key cryptography

Cryptographic primitives

public key encryption
signature
homomorphic encryption

$$
\begin{aligned}
& \text { error correcting codes lattices } \\
& \text { factoring } \\
& \text { (Supposedly intractable) algorithmic problems }
\end{aligned}
$$

Public key cryptography

Cryptographic primitives

public key encryption
signature
A

homomorphic encryption
(Supposedly intractable) algorithmic problems

Public key cryptography

Cryptographic primitives
public key encryption
signature
homomorphic encryption
(Supposedly intractable) algorithmic problems

Today's algorithmic problem

$$
\begin{aligned}
& K=\mathbb{Q}[\sqrt{2}] \\
& O_{K}=\mathbb{Z}[\sqrt{2}]
\end{aligned}
$$

Today's algorithmic problem

$$
\begin{aligned}
& K=\mathbb{Q}[\sqrt{2}] \\
& O_{K}=\mathbb{Z}[\sqrt{2}]
\end{aligned}
$$

$$
\begin{aligned}
& \sigma: \quad K \rightarrow \mathbb{R}^{2} \\
& x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
\end{aligned}
$$

Today's algorithmic problem

$$
\begin{aligned}
& K=\mathbb{Q}[\sqrt{2}] \\
& O_{K}=\mathbb{Z}[\sqrt{2}]
\end{aligned}
$$

$$
\sigma: \quad K \rightarrow \mathbb{R}^{2}
$$

$$
x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
$$

Today's algorithmic problem

$$
\begin{aligned}
& K=\mathbb{Q}[\sqrt{2}] \\
& \sigma: \quad K \rightarrow \mathbb{R}^{2} \\
& O_{K}=\mathbb{Z}[\sqrt{2}] \quad x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
\end{aligned}
$$

Principal ideal: $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\} \quad$ (for some $\alpha \in O_{K}$)

Today's algorithmic problem

$$
\begin{aligned}
& K=\mathbb{Q}[\sqrt{2}] \\
& \sigma: \quad K \rightarrow \mathbb{R}^{2} \\
& O_{K}=\mathbb{Z}[\sqrt{2}] \quad x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
\end{aligned}
$$

Principal ideal: $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\} \quad$ (for some $\alpha \in O_{K}$)

Today's algorithmic problem

$$
\begin{array}{llr}
K=\mathbb{Q}[\sqrt{2}] & \sigma: \quad K & \rightarrow \mathbb{R}^{2} \\
O_{K}=\mathbb{Z}[\sqrt{2}] & x_{0}+x_{1} \sqrt{2} & \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
\end{array}
$$

Principal ideal: $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\} \quad$ (for some $\alpha \in O_{K}$)

Today's algorithmic problem

$$
\begin{array}{llr}
K=\mathbb{Q}[\sqrt{2}] & \sigma: \quad K & \rightarrow \mathbb{R}^{2} \\
O_{K}=\mathbb{Z}[\sqrt{2}] & x_{0}+x_{1} \sqrt{2} & \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)
\end{array}
$$

Principal ideal: $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\} \quad$ (for some $\alpha \in O_{K}$)
ideal-Shortest Vector Problem (ideal-SVP): given α, find $\alpha r \in \alpha O_{K}$ such that $\|\sigma(\alpha r)\|_{2}$ is as small as possible (and $\neq 0$)

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_{2}$ is as small as possible (and $\neq 0$)

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_{2}$ is as small as possible (and $\neq 0$)

- Famous problem, well studied

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_{2}$ is as small as possible (and $\neq 0$)

- Famous problem, well studied
- Known algorithms scale badly (exponentially) with the dimension n

$$
\begin{aligned}
& \rightsquigarrow n=2 \quad \text { () (by hand) } \\
& \rightsquigarrow n \approx 60 \text { (;) (personal laptop) } \\
& \rightsquigarrow n=180 \text { (:) (super computer) } \\
& \rightsquigarrow n \approx 700 \text { (cryptography) }
\end{aligned}
$$

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_{2}$ is as small as possible (and $\neq 0$)

- Famous problem, well studied
- Known algorithms scale badly (exponentially) with the dimension n

```
\rightsquigarrown=2 (;) (by hand)
\rightsquigarrow n\approx60 © (personal laptop)
\rightsquigarrown=180 ©: (super computer)
\rightsquigarrow\approx700 ©( (cryptography)
```

- Can we exploit the algebraic structure in ideal-SVP?

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_{2}$ is as small as possible (and $\neq 0$)

- Famous problem, well studied
- Known algorithms scale badly (exponentially) with the dimension n

$$
\begin{aligned}
& \rightsquigarrow n=2 \quad \text { () (by hand) } \\
& \rightsquigarrow n \approx 60 \text { (;) (personal laptop) } \\
& \rightsquigarrow n=180 \text { (:) (super computer) } \\
& \rightsquigarrow n \approx 700 \text { © (cryptography) }
\end{aligned}
$$

- Can we exploit the algebraic structure in ideal-SVP?

Remark: there are families of nice lattices in which SVP is easy

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Fact 1: $O_{K}^{\times}=\left\{x_{0}+x_{1} \sqrt{2} \in O_{K} \mid\left(x_{0}+x_{1} \sqrt{2}\right)\left(x_{0}-x_{1} \sqrt{2}\right)= \pm 1\right\}$

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Fact 1: $O_{K}^{\times}=\left\{x_{0}+x_{1} \sqrt{2} \in O_{K} \mid\left(x_{0}+x_{1} \sqrt{2}\right)\left(x_{0}-x_{1} \sqrt{2}\right)= \pm 1\right\}$
Fact 2: $\alpha O_{K}=\beta O_{K} \Leftrightarrow \alpha=\beta \cdot u$ for some $u \in O_{K}^{\times}$

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Fact 1: $O_{K}^{\times}=\left\{x_{0}+x_{1} \sqrt{2} \in O_{K} \mid\left(x_{0}+x_{1} \sqrt{2}\right)\left(x_{0}-x_{1} \sqrt{2}\right)= \pm 1\right\}$
Fact 2: $\alpha O_{K}=\beta O_{K} \Leftrightarrow \alpha=\beta \cdot u$ for some $u \in O_{K}^{\times}$

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Idea:
> focus on finding $u \in O_{K}^{\times}$s.t. $\|\sigma(\alpha u)\|$ is minimal

Exploiting the algebraic structure

$K=\mathbb{Q}[\sqrt{2}] \quad O_{K}=\mathbb{Z}[\sqrt{2}] \quad \sigma: x_{0}+x_{1} \sqrt{2} \mapsto\left(x_{0}+x_{1} \sqrt{2}, x_{0}-x_{1} \sqrt{2}\right)$
Objective: find a short element in $\alpha O_{K}=\left\{\alpha r \mid r \in O_{K}\right\}$

Idea:

- focus on finding $u \in O_{K}^{\times}$s.t. $\|\sigma(\alpha u)\|$ is minimal
> take the $\log (|\cdot|)$ coordinate-wise (Log)
$\rightsquigarrow \log \left(\left\{\alpha u \mid u \in O_{K}^{\times}\right\}\right)=\log (\alpha)+\log \left(O_{K}^{\times}\right)$is a shifted lattice \rightsquigarrow for some $K, \log \left(O_{K}^{\times}\right)$is a nice lattice (nicer than $\sigma\left(\alpha O_{K}\right)$)
\rightsquigarrow use lattice algorithms here!

Summing up

Motivation: cryptography
Tools:

- algorithmic number theory
- complexity theory

Summing up

Motivation: cryptography
Tools:

- algorithmic number theory
- complexity theory

Thank you

