Cryptography, hard problems and algorithmic number theory

Alice Pellet-Mary

CNRS et Université de Bordeaux

Présentation scientifique dans le cadre du DOR 2023

Alice Pellet-Mary

Hard problems in cryptography

error correcting codes	lattices	isogenies
factoring	discrete logarithm ····	
(Supposedly intractable) algorithmic problems		

$$K = \mathbb{Q}[\sqrt{2}]$$
$$O_K = \mathbb{Z}[\sqrt{2}]$$

$$egin{aligned} & \mathcal{K} = \mathbb{Q}[\sqrt{2}] & & \sigma : & \mathcal{K} o \mathbb{R}^2 \ & & \mathcal{O}_\mathcal{K} = \mathbb{Z}[\sqrt{2}] & & & x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \end{aligned}$$

$$\begin{split} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] & \sigma : \quad \mathcal{K} \to \mathbb{R}^2 \\ \mathcal{O}_{\mathcal{K}} &= \mathbb{Z}[\sqrt{2}] & x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \end{split}$$

Alice Pellet-Mary

27/01/2023 3/6

$$\begin{split} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] & \sigma : \quad \mathcal{K} \to \mathbb{R}^2 \\ \mathcal{O}_{\mathcal{K}} &= \mathbb{Z}[\sqrt{2}] & x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \end{split}$$

Principal ideal: $\alpha O_{\mathcal{K}} = \{ \alpha r \mid r \in O_{\mathcal{K}} \}$ (for some $\alpha \in O_{\mathcal{K}}$)

$$\begin{split} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] & \sigma : \quad \mathcal{K} \to \mathbb{R}^2 \\ \mathcal{O}_{\mathcal{K}} &= \mathbb{Z}[\sqrt{2}] & x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \end{split}$$

Principal ideal: $\alpha O_{\mathcal{K}} = \{ \alpha r \mid r \in O_{\mathcal{K}} \}$ (for some $\alpha \in O_{\mathcal{K}}$)

$$\begin{split} & \mathcal{K} = \mathbb{Q}[\sqrt{2}] & \sigma : \quad \mathcal{K} \to \mathbb{R}^2 \\ & \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] & x_0 + x_1\sqrt{2} \mapsto \left(x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}\right) \end{split}$$

Principal ideal: $\alpha O_{\mathcal{K}} = \{ \alpha r \mid r \in O_{\mathcal{K}} \}$ (for some $\alpha \in O_{\mathcal{K}}$)

$$egin{aligned} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] & \sigma : & \mathcal{K} & o \mathbb{R}^2 \ \mathcal{O}_\mathcal{K} &= \mathbb{Z}[\sqrt{2}] & x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \end{aligned}$$

Principal ideal: $\alpha O_{\mathcal{K}} = \{ \alpha r \mid r \in O_{\mathcal{K}} \}$ (for some $\alpha \in O_{\mathcal{K}}$)

ideal-Shortest Vector Problem (ideal-SVP): given α , find $\alpha r \in \alpha O_K$ such that $\|\sigma(\alpha r)\|_2$ is as small as possible (and $\neq 0$)

Alice Pellet-Mary

Hard problems in cryptography

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_2$ is as small as possible (and $\neq 0$)

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_2$ is as small as possible (and $\neq 0$)

▶ Famous problem, well studied

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_2$ is as small as possible (and $\neq 0$)

- ▶ Famous problem, well studied
- ► Known algorithms scale badly (exponentially) with the dimension n → n = 2 (by hand)
 - \rightarrow $n \approx 60$ \bigcirc (personal laptop)
 - \rightsquigarrow n = 180 \bigoplus (super computer)
 - \rightsquigarrow $n \approx 700$ \otimes (cryptography)

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_2$ is as small as possible (and $\neq 0$)

- ▶ Famous problem, well studied
- ▶ Known algorithms scale badly (exponentially) with the dimension n $\rightarrow n = 2 \quad \bigoplus \quad (by hand)$ $\rightarrow n \approx 60 \quad \bigoplus \quad (personal laptop)$ $\rightarrow n = 180 \quad \bigoplus \quad (super computer)$ $\rightarrow n \approx 700 \quad \bigoplus \quad (cryptography)$

Can we exploit the algebraic structure in ideal-SVP?

Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, find $\vec{v} \in L$ such that $\|\vec{v}\|_2$ is as small as possible (and $\neq 0$)

- ▶ Famous problem, well studied
- Known algorithms scale badly (exponentially) with the dimension n

 - \rightsquigarrow $n \approx 700$ \otimes (cryptography)
- Can we exploit the algebraic structure in ideal-SVP?

Remark: there are families of nice lattices in which SVP is easy

 $\mathcal{K} = \mathbb{Q}[\sqrt{2}] \quad \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2})$ Objective: find a short element in $\alpha \mathcal{O}_{\mathcal{K}} = \{\alpha r \mid r \in \mathcal{O}_{\mathcal{K}}\}$

$$\mathcal{K} = \mathbb{Q}[\sqrt{2}] \quad \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2})$$

Objective: find a short element in $\alpha O_{\mathcal{K}} = \{ \alpha r \mid r \in O_{\mathcal{K}} \}$

Fact 1: $O_{\mathcal{K}}^{\times} = \{x_0 + x_1\sqrt{2} \in O_{\mathcal{K}} \mid (x_0 + x_1\sqrt{2})(x_0 - x_1\sqrt{2}) = \pm 1\}$

$$\begin{split} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] \quad O_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \\ \text{Objective: find a short element in } \alpha O_{\mathcal{K}} &= \{\alpha r \mid r \in O_{\mathcal{K}}\} \end{split}$$

Fact 1: $O_{\mathcal{K}}^{\times} = \{x_0 + x_1\sqrt{2} \in O_{\mathcal{K}} \mid (x_0 + x_1\sqrt{2})(x_0 - x_1\sqrt{2}) = \pm 1\}$ Fact 2: $\alpha O_{\mathcal{K}} = \beta O_{\mathcal{K}} \Leftrightarrow \alpha = \beta \cdot u$ for some $u \in O_{\mathcal{K}}^{\times}$

$$\begin{split} &\mathcal{K} = \mathbb{Q}[\sqrt{2}] \quad \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \\ &\text{Objective: find a short element in } \alpha \mathcal{O}_{\mathcal{K}} = \{\alpha r \mid r \in \mathcal{O}_{\mathcal{K}}\} \end{split}$$

Fact 1: $O_{\mathcal{K}}^{\times} = \{x_0 + x_1\sqrt{2} \in O_{\mathcal{K}} \mid (x_0 + x_1\sqrt{2})(x_0 - x_1\sqrt{2}) = \pm 1\}$ Fact 2: $\alpha O_{\mathcal{K}} = \beta O_{\mathcal{K}} \Leftrightarrow \alpha = \beta \cdot u$ for some $u \in O_{\mathcal{K}}^{\times}$

 $\mathcal{K} = \mathbb{Q}[\sqrt{2}] \quad \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2})$ Objective: find a short element in $\alpha \mathcal{O}_{\mathcal{K}} = \{\alpha r \mid r \in \mathcal{O}_{\mathcal{K}}\}$

Idea:

▶ focus on finding $u \in O_K^{\times}$ s.t. $\|\sigma(\alpha u)\|$ is minimal

$$\begin{split} \mathcal{K} &= \mathbb{Q}[\sqrt{2}] \quad \mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{2}] \quad \sigma : x_0 + x_1\sqrt{2} \mapsto (x_0 + x_1\sqrt{2}, x_0 - x_1\sqrt{2}) \\ \text{Objective: find a short element in } \alpha \mathcal{O}_{\mathcal{K}} = \{\alpha r \mid r \in \mathcal{O}_{\mathcal{K}}\} \end{split}$$

Idea:

- ▶ focus on finding $u \in O_{\mathcal{K}}^{ imes}$ s.t. $\|\sigma(\alpha u)\|$ is minimal
- ▶ take the log(| · |) coordinate-wise (Log)
 - \rightsquigarrow Log $(\{ \alpha u \mid u \in O_{\mathcal{K}}^{\times} \}) = Log(\alpha) + Log(O_{\mathcal{K}}^{\times})$ is a shifted lattice
 - \rightsquigarrow for some K, $\mathsf{Log}(\mathcal{O}_K^{\times})$ is a nice lattice (nicer than $\sigma(\alpha \mathcal{O}_K)$)
 - → use lattice algorithms here!

Motivation: cryptography

Tools:

- algorithmic number theory
- complexity theory

Motivation: cryptography

Tools:

- algorithmic number theory
- complexity theory

Thank you

Alice Pellet-Mary

Hard problems in cryptography

27/01/2023 6/6