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Cryptographic primitives

public key

encryption
signature

homomorphic

encryption
. . .

(Supposedly intractable) algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .

. . .

27/01/2023 2/6Alice Pellet-Mary Hard problems in cryptography



Public key cryptography

Cryptographic primitives

public key

encryption
signature

homomorphic

encryption
. . .

(Supposedly intractable) algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .

. . .

27/01/2023 2/6Alice Pellet-Mary Hard problems in cryptography



Public key cryptography

Cryptographic primitives

public key

encryption
signature

homomorphic

encryption
. . .

(Supposedly intractable) algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .

. . .

27/01/2023 2/6Alice Pellet-Mary Hard problems in cryptography



Public key cryptography

Cryptographic primitives

public key

encryption
signature

homomorphic

encryption
. . .

(Supposedly intractable) algorithmic problems

factoring discrete logarithm

error correcting codes lattices isogenies

. . .

. . .

27/01/2023 2/6Alice Pellet-Mary Hard problems in cryptography



Today's algorithmic problem

K = Q[
√
2]

OK = Z[
√
2]

σ : K → R2

x0 + x1
√
2 7→ (x0 + x1

√
2, x0 − x1

√
2)

σ(OK)

Principal ideal: αOK = {αr | r ∈ OK} (for some α ∈ OK )

ideal-Shortest Vector Problem (ideal-SVP): given α, �nd αr ∈ αOK such

that ∥σ(αr)∥2 is as small as possible (and ̸= 0)
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Short vectors in lattices

ideal-SVP is a special case of the

Shortest Vector Problem (SVP): given a lattice L, �nd v⃗ ∈ L such that

∥v⃗∥2 is as small as possible (and ̸= 0)

▶ Famous problem, well studied

▶ Known algorithms scale badly (exponentially) with the dimension n

⇝ n = 2 (by hand)

⇝ n ≈ 60 (personal laptop)

⇝ n = 180 (super computer)

⇝ n ≈ 700 (cryptography)

▶ Can we exploit the algebraic structure in ideal-SVP?

Remark: there are families of nice lattices in which SVP is easy
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Exploiting the algebraic structure

K = Q[
√
2] OK = Z[

√
2] σ : x0 + x1

√
2 7→ (x0 + x1

√
2, x0 − x1

√
2)

Objective: �nd a short element in αOK = {αr | r ∈ OK}

σ(α)

σ(αOK)

Log−−→

Log(αOK)

Log(α)

Fact 1: O×
K = {x0 + x1

√
2 ∈ OK | (x0 + x1

√
2)(x0 − x1

√
2) = ±1}

Fact 2: αOK = βOK ⇔ α = β · u for some u ∈ O×
K
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Summing up

Motivation: cryptography

Tools:

▶ algorithmic number theory

▶ complexity theory

Thank you
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