Approx-SVP in Ideal Lattices with Pre-Processing

Alice Pellet-Mary, Guillaume Hanrot and Damien Stehlé

ENS de Lyon

Eurocrypt May 21, 2019

European Research Council Established by the European Commission

What is this talk about

Time/Approximation trade-offs for SVP in ideal lattices:

(Figures are for prime power cyclotomic fields)

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} .

Lattice

A lattice L is a discrete 'vector space' over \mathbb{Z} . A basis of L is an invertible matrix B such that $L = \{Bx \mid x \in \mathbb{Z}^n\}$.

 $\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$ and $\begin{pmatrix} 17 & 10 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector. Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Complexity of SVP/CVP

Applications

Approx-SVP and approx-CVP in generic lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

A. Pellet-Mary

[[]Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical computer science.

Complexity of SVP/CVP

Applications

Approx-SVP and approx-CVP in generic lattices are conjectured to be hard to solve both quantumly and classically \Rightarrow used in cryptography

Best Time/Approx trade-off for arbitrary lattices: BKZ algorithm [Sch87]

A. Pellet-Mary

[[]Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical computer science.

Improve efficiency of lattice-based crypto using structured lattices. \Rightarrow E.g. ideal lattices = ideals in the ring of integers of a number field

Improve efficiency of lattice-based crypto using structured lattices. \Rightarrow E.g. ideal lattices = ideals in the ring of integers of a number field

Is approx-SVP still hard when restricted to ideal lattices?

SVP in ideal lattices

[CDW17]: Better than BKZ in the quantum setting

Heuristic

• For prime power cyclotomic fields

A. Pellet-Mary

[[]CDW17] R. Cramer, L. Ducas, B. Wesolowski. Short Stickelberger Class Relations and Application to Ideal-SVP, Eurocrypt.

This work

- Heuristic
- Pre-processing $2^{O(n)}$, independent of the choice of the ideal
- All number fields (trade-offs differ slightly)

A. Pellet-Mary

• Approx-SVP in ideal lattices might be easier than in generic lattices

Impact

- Approx-SVP in ideal lattices might be easier than in generic lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing

Impact

- Approx-SVP in ideal lattices might be easier than in generic lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - very few schemes based in ideal-SVP [Gen09,GGH13]

schemes
$$\rightarrow$$
 RLWE \rightarrow ideal SVP

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC. [GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

Impact

- Approx-SVP in ideal lattices might be easier than in generic lattices
- No concrete impact/attack against crypto schemes
 - exponential pre-processing
 - very few schemes based in ideal-SVP [Gen09,GGH13]

schemes
$$\rightarrow$$
 RLWE $\underset{7}{\leftrightarrow}$ ideal SVP

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices, STOC. [GGH13] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt. Outline of the talk

Definitions and objective

2 The CDPR algorithm

First definitions

Notation

$$R = \mathbb{Z}[X]/(X^{n} + 1)$$
 for $n = 2^{k}$

(for simplicity)

First definitions

Notation

$$R=\mathbb{Z}[X]/(X^n+1)$$
 for $n=2^k$

(for simplicity)

• Units:
$$R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$$

• e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$

First definitions

Notation

$$R=\mathbb{Z}[X]/(X^n+1)$$
 for $n=2^k$

(for simplicity)

- Units: $R^{\times} = \{a \in R \mid \exists b \in R, ab = 1\}$ • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$
- Principal ideals: $\langle g
 angle = \{ gr \mid r \in R \}$ (i.e. all multiples of g)
 - e.g. $\langle 2 \rangle = \{ even numbers \}$ in $\mathbb Z$
 - g is called a generator of $\langle g
 angle$
 - The generators of $\langle g
 angle$ are exactly the ug for $u \in R^{ imes}$

Why is $\langle g \rangle$ a lattice?

Why is $\langle g \rangle$ a lattice?

$R\simeq\mathbb{Z}^n$

$$R = \mathbb{Z}[X]/(X^{n}+1) \to \mathbb{Z}^{n}$$

$$r = r_{0} + r_{1}X + \dots + r_{n-1}X^{n-1} \mapsto (r_{0}, r_{1}, \dots, r_{n-1})$$

 $\langle g \rangle \subseteq R \simeq \mathbb{Z}^n$ + stable by '+' and '-' \Rightarrow lattice

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle \setminus \{0\}$ such that $||r|| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

Objective of this talk

Objective

Given a basis of a principal ideal $\langle g \rangle$ and $\alpha \in (0, 1]$, Find $r \in \langle g \rangle \setminus \{0\}$ such that $||r|| \leq 2^{\widetilde{O}(n^{\alpha})} \cdot \lambda_1$.

BKZ algorithm can do it in time $2^{O(n^{1-\alpha})}$, can we do better?

The CDPR algorithm (on ideas of [RBV04,CGS14,Ber14])

[CDPR16] R. Cramer, L. Ducas, C. Peikert and O. Regev. Recovering Short Generators of Principal Ideals in Cyclotomic Rings. Eurocrypt.

[RBV04]: G. Rekaya, J.-C. Belfiore, and E. Viterbo. A very efficient lattice reduction tool on fast fading channels. ISITA.

[CGS14]: P. Campbell, M. Groves, and D. Shepherd. Soliloquy: A cautionary tale.

[Ber14]: D. J. Bernstein. A subfield-logarithm attack against ideal lattices: Computational algebraic number theory tackles lattice based cryptography. The cr.yp.to blog.

A. Pellet-Mary

 $Log: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

 $Log: R \to \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties Log $r = h + a\mathbf{1}$, with $h \in H$ • $a \ge 0$

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

Log $r = h + a\mathbf{1}$, with $h \in H$

- a ≥ 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

Log $r = h + a\mathbf{1}$, with $h \in H$

- a ≥ 0
- a = 0 iff r is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $\operatorname{Log}(r_1 \cdot r_2) = \operatorname{Log}(r_1) + \operatorname{Log}(r_2)$

 $\mathsf{Log}: R o \mathbb{R}^n$ (somehow generalising log to R)

Let $\mathbf{1} = (1, \cdots, 1)$ and $H = \mathbf{1}^{\perp}$.

Properties

Log $r = h + a\mathbf{1}$, with $h \in H$

- a ≥ 0
- *a* = 0 iff *r* is a unit
- $\Lambda := Log(R^{\times})$ is a lattice
- $Log(r_1 \cdot r_2) = Log(r_1) + Log(r_2)$
- $||r|| \simeq 2^{||\operatorname{Log} r||_{\infty}}$

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

What does $Log\langle g \rangle$ look like?

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - ▶ [BS16]: quantum time poly(n)
 - ▶ [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$

A. Pellet-Mary

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ

A. Pellet-Mary

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[[]BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

generator in cyclotomic integer rings, Eurocrypt

A. Pellet-Mary

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA. [BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ

generator in cyclotomic integer rings, Eurocrypt.

A. Pellet-Mary

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA. [BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - Good basis of Λ \Rightarrow CVP in poly time $\Rightarrow ||h|| \le \widetilde{O}(\sqrt{n})$

generator in cyclotomic integer rings, Eurocrypt.

A. Pellet-Mary

[[]BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA. [BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{\tilde{O}(\sqrt{n})}$
- Solve CVP in Λ
 - Good basis of Λ \Rightarrow CVP in poly time $\Rightarrow ||h|| \le \widetilde{O}(\sqrt{n})$

$$\begin{array}{c} \text{Log}(g_1) \\ H \\ \text{Log}(ug_1) \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ \Lambda \\ \end{array}$$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

A. Pellet-Mary

The CDPR algorithm:

- Find a generator g_1 of $\langle g \rangle$.
 - [BS16]: quantum time poly(n)
 - [BEFGK17]: classical time $2^{O(\sqrt{n})}$
- Solve CVP in Λ
 - Good basis of Λ \Rightarrow CVP in poly time $\Rightarrow ||h|| \le \widetilde{O}(\sqrt{n})$

$$\|ug_1\| \leq 2^{\widetilde{O}(\sqrt{n})} \cdot \lambda_1$$

[BS16]: J.F. Biasse, F. Song. Efficient quantum algorithms for computing class groups and solving the principal ideal problem in arbitrary degree number fields, SODA.

[BEFGK17]: J.F. Biasse, T. Espitau, P.A. Fouque, A. Gélin, P. Kirchner. Computing generator in cyclotomic integer rings, Eurocrypt.

A. Pellet-Mary

This work

The lattice L

The lattice L

Heuristic

For some $\nu = \widetilde{O}(n)$, the covering radius of L satisfies $\mu(L) = O(1)$. = for all target t, there exists $s \in L$ such that ||t - s|| = O(1)

CDPRThis workGood basis of ΛNo good basis of L known

CDPRThis workGood basis of ΛNo good basis of L known

Key observation

L does not depend on $\langle g
angle$

CDPRThis workGood basis of ΛNo good basis of L known

Key observation

L does not depend on $\langle g \rangle \Rightarrow$ Pre-processing on L

CDPRThis workGood basis of ΛNo good basis of L known

Key observation

L does not depend on $\langle g \rangle \Rightarrow$ Pre-processing on L

[Laa16, DLW19, Ste19]: • Find
$$s \in L$$
 such that $||s - t|| = \widetilde{O}(n^{\alpha})$
• Time:
• $2^{\widetilde{O}(n^{1-2\alpha})}$ (query)
• $+ 2^{O(n)}$ (pre-processing)

A. Pellet-Mary

[[]Laa16] T. Laarhoven. Finding closest lattice vectors using approximate Voronoi cells. SAC.

[[]DLW19]: E. Doulgerakis, T. Laarhoven, and B. de Weger. Finding closest lattice vectors using approximate Voronoi cells. PQCRYPTO.

[[]Ste19]: N. Stephens-Davidowitz. A time-distance trade-off for GDD with preprocessing – instantiating the DLW heuristic. ArXiv.

Conclusion

Approximation	Query time	Pre-processing
$2^{\widetilde{O}(n^{lpha})}$	$2^{\widetilde{O}(n^{1-2\alpha})} + (\operatorname{poly}(n) \text{ or } 2^{\widetilde{O}(\sqrt{n})})$	2 ^{<i>O</i>(<i>n</i>)}

 $+2^{O(n)}$ Pre-processing / Non-uniform algorithm

A. Pellet-Mary

Extensions

We can extend the algorithm to

• Non-principal ideals

Extensions

We can extend the algorithm to

- Non-principal ideals
- All number fields

Extensions

We can extend the algorithm to

- Non-principal ideals
- All number fields

Questions?