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Algebraic lattices
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Algebraic lattices

What are they:

» lattices

» but also algebraic objects (e.g., ideals and modules in a number field)

Why use them:
» mainly for efficiency (faster primitives, smaller keys)

» also sometimes for the algebraic properties

(e.g., the first FHE schemes, or some iO candidates)

What about security:
» most of the time no better attacks than for unstructured lattices

» but for some problems, we have specific attacks using the algebraic
structure (cf second talk)
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Outline of the talk

© A bit of number theory

© Algebraic lattices

© Algorithmic problems for cryptography

@ Some more number theory
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@ A bit of number theory
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Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)
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Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

» K=Q
» K =Q[X]/(X?+1) with d = 2° ~ power-of-two cyclotomic field
» K =Q[X]/(X? = X —1) with d prime ~ NTRUPrime field
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Number fields

Number field: K = Q[X]/P(X) (P irreducible, deg(P) = d)

» K=Q
» K =Q[X]/(X?+1) with d = 2° ~ power-of-two cyclotomic field
» K =Q[X]/(X? = X —1) with d prime ~ NTRUPrime field

Ring of integers: Ok C K, for this talk Ok = Z[X]/P(X)
(more generally Z[X]/P(X) C Ok but Ok can be larger)
» Ok =7
» Ok = Z[X]/(X? + 1) with d = 2° ~ power-of-two cyclotomic ring
» Ok = Z[X]/(X? — X — 1) with d prime ~» NTRUPrime ring of integers
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Embeddings

(K =Q[X]/P(X), ai,---,aq complex roots of P(X))

Coefficient embedding: X : K — R
Yo viX = (vo, e Ya1)
Canonical embedding: o : K — c¢
y(X) = (y(a1)7"'7y(ad))
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» canonical embedding is used in cryptanalysis / reductions

(nice mathematical properties)
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Embeddings

(K =Q[X]/P(X), ai,---,aq complex roots of P(X))

Coefficient embedding: X : K — R
Yo yiX = (Yo Yae1)

Canonical embedding: o : K —
y(X) = (y(a1)7"'7y(ad))

» both embeddings induce a (different) geometry on K

Which embedding should we choose?
» coefficient embedding is used for constructions (efficient implementation)

» canonical embedding is used in cryptanalysis / reductions

(nice mathematical properties)

» for fields used in crypto, both geometries are ~ the same
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|deals

Ideal: | C Ok is an ideal if » x+y€lforall x,y el
» a-xclforallac Ok and xcl
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» a-xclforallac Ok and xcl
» h ={2alacZ}and Jy ={6alacZ}in Ox =7
»h={a+b-X|a+b=0mod2, a,beZ}in Ox =7Z[X]/(X*+1)

Multiplication: [-J:={>_ya;-bi|r>0,a €l, b€ J}
~ this is also an ideal

» by ={12alac Z}
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|deals

Ideal: | C Ok is an ideal if » x+y€lforall x,y el
» a-xclforallac Ok and xecl
» 1 ={2alacZ}and /s ={6alacZ}in Ok =7
> h={a+b-X|at+b=0mod?2, a,becZ}in Ox =Z[X]/(X*+1)

Multiplication: [-J:={>_ya;-bi|r>0,a €l, b€ J}
~ this is also an ideal

»ll-J1:{12a\a€Z}

Algebraic norm: N (1) := |Ok/I| (“size” of 1)
~ norm is multiplicative: N(IJ) = N (N (J)
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|deals

Ideal: | C Ok is an ideal if » x+y€lforall x,y el
» a-xclforallac Ok and xecl

» h ={2alacZ}and Jy ={6alacZ}in Ox =7

»h={atbh-X|atb=0mod2, a,bcZ}in Ok =Z[X]/(X*®+1)
Multiplication: [-J:={>_ya;-bi|r>0,a €l, b€ J}

~ this is also an ideal

» by ={12alac Z}

Algebraic norm: N (1) := |Ok/I| (“size” of 1)
~ norm is multiplicative: N(IJ) = N (N (J)

> /’V’(ll) =2 and ./'\/,-(Jl) =6
| 4 /\/’(/2) =2
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Principal ideals and units

Units: Og ={a€ Ok | 3be€ Ok,ab=1}
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Units: Og ={a€ Ok | 3be€ Ok,ab=1}

» 2% ={-1,1}

> (ZIX]/(X? +1))C ={-1,1,-X, X}

> (ZIX]/(X* + 1)) = {1+ X + X?)'| i € Z}
» in general, O} is infinite
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Principal ideals and units

Units: Og ={a€ Ok | 3be€ Ok,ab=1}

» 2% ={-1,1}

> (ZIX]/(X? +1))C ={-1,1,-X, X}

> (ZIX]/(X* + 1)) = {1+ X + X?)'| i € Z}
» in general, O} is infinite

Principal ideals: (g) :={g-a|a€ Ok}

» h ={2alacZ}=(2)
» h={a+b-X|a+b=0mod2,a,beZ}=(1+X)
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Principal ideals and units

Units: Og ={a€ Ok | 3be€ Ok,ab=1}
» 2% ={-1,1}
> (Z[X]/(X* + 1)) = {-1,1,-X, X}
> (Z[X]/(X*+ 1) ={£(1+ X+ X?) |i€Z}
» in general, Oy is infinite

Principal ideals: (g) :=={g-a|a€ Ok}
» h ={2alacZ}=(2)
» h={a+b-X|a+b=0mod?2, a,beZ}=(1+X)
» g is a generator of (g)
» { generators of (g) } = {gu|ue O}
» N({g)) =|N(g)|, where N(g) = Hig(a,') (ai complex roots of P(X))
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Outline of the talk

© Algebraic lattices
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|deal lattices
Ok is a lattice:

» Ok =1-Z+X-Z+---+X91.7
» 0(Ok)=0(1)-Z+ - -+0o(X91).7Z
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|deal lattices

Ok is a lattice:
» Ok =1-Z+X-Z+---+X91.7
» 0(Ok)=0(1)-Z+ - -+0o(X91).7Z

[U(OK) is a lattice of rank d in C? ~ R?? with basis (U(Xi))0§i<d]
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|deal lattices

Ok is a lattice:
> OK:l‘Z+X‘Z+'-‘+Xd_1.Z
> U(OK):U(l)'Z+"'+U(Xd_1)-Z

[U(OK) is a lattice of rank d in C? ~ R?? with basis (U(Xi))0§i<d]

(g) is a lattice:
» o((g)=0(g) Z+ - +o(g-X"1)-Z
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|deal lattices

Ok is a lattice:
> OK:l‘Z+X‘Z+'-‘+Xd_1.Z
> U(OK):U(l)'Z+"'+U(Xd_1)-Z

[U(OK) is a lattice of rank d in C? ~ R?? with basis (U(Xi))0§i<d]

(g) is a lattice:
» o((g)=0(g) Z+ - +o(g-X"1)-Z

[0((g)) is a lattice of rank d in C¢ ~ R?? with basis (o(g - Xi))0§i<d}

(this is also true for non principal ideals)
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|deal lattices (2)

1
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|deal lattices (2)

N )
LoD
1

Alice Pellet-Mary Algebraic lattices



|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}
e e e e X))
S IR (e
1
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|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}

SRS
SR SRSE I
' 8d—1

(in K = Q[X]/X¢ +1)
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|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}

e o 0 o @ o @
o @ o @ o @ o 14X 80 — 8d-1
o e o o o o U(<O+ >) 81 80
XI? e o o o o 0'( K)
8d—1 8d—2

(in K = Q[X]/X¢ +1)
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|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}

e o 0 o @ o @
o @ o @ o @ o 14X 80 —8d-1 - — 81
o e o o o o (T(<O + >) 81 80 o T 82
XI? o e o o o 7(Ok) )
8d—1 8d—2 cee 80

(in K = Q[X]/X¢ +1)
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|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}

e o 0 o @ o @
o @ o @ o @ o 14X 80 —8-1 - — 8
o e o o o o (T(<O + >) 81 80 o T 82
XI? o e o o o 7(Ok) )
8d—1 8d—2 cee 80

(in K = Q[X]/X¢ +1)

Discriminant: Ak := y/vol(c(Ok))
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|deal lattices (2)

Basis of (g): g,g- X, ,g- X9}

e o 06 0 0 0o o
© e o o o o o 14X 80 —8d-1 - — &
© e o e o o J(<O+ ) &1 80 o T &2
XI? o e o o o 7(Ok) )
8d-1  Bd-2 e 80
(in K = Q[X]/X¢ +1)
Discriminant: Ak := y/vol(c(Ok))

Volume of an ideal: vol(a(l)) = N(I) - VAk
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Module lattices

(Free) module:

[ M= {B-x|x € Ok} for some matrix B € (’)fg(k with detx(B) # 0 ]

Alice Pellet-Mary Algebraic lattices



Module lattices

(Free) module:

E M = {B-x|x € Ok} for some matrix B € OF** with detx(B) # 0 ]

» k is the module rank

» B is a module basis of M

(if the module is not free, it has a “pseudo-basis” instead)

o(M) is a lattice:

» of Z-rank n:=d - k, included in C"
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Module lattices

(Free) module:

E M = {B-x|x € Ok} for some matrix B € OF** with detx(B) # 0 ]

» k is the module rank

» B is a module basis of M

(if the module is not free, it has a “pseudo-basis” instead)

o(M) is a lattice:
» of Z-rank n:=d - k, included in C"

» with basis (0(b;X/))1<i<k (b columns of B)
0<j<d
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Module lattices

(Free) module:

E M = {B-x|x € Ok} for some matrix B € OF** with detx(B) # 0 ]

» k is the module rank

» B is a module basis of M
(if the module is not free, it has a “pseudo-basis” instead)
o(M) is a lattice:
» of Z-rank n:=d - k, included in C"

» with basis (0(b;X/))1<i<k (b columns of B)
0<j<d

> vol(M) = |\ (detx(B))| - AK/?
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Modules vs ideals

|deal Module of rank 1

(principal ideal = free module of rank 1)
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Modules vs ideals

Ideal = Module of rank 1
(principal ideal = free module of rank 1)
In K = Q[X]/(X9 + 1):
dI Mb,, | Mb,, My,
aa —aq -+ —a
1 d 2 Mbs1 | Mb, M,
a a1 Tt a3
M, =
dd add—-1 --- di
My, | M, My

basis of a
principal ideal lattice

Alice Pellet-Mary Algebraic lattices

of rank k
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basis of a free module lattice
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Algorithmic problems

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] o
BDD
. . 2 "¢ @
S
° ° ° 1\ 4o
e
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
~v-SVP ~-SIVP ~v-BDD
shortest vector problem shortest independent bounded distance
vector problem decoding problem
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Algorithmic problems

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
BDD
. . 2 "¢ @
S
° ° ° 1\ 4o
SRS
[ ] [ ] [ ] e
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
~v-SVP ~-SIVP ~v-BDD
shortest vector problem shortest independent bounded distance
vector problem decoding problem

Notations:
» id-X = problem X restricted to ideal lattices

» mod-X, = problem X restricted to module lattices of rank k
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Hardness of SVP

Asymptotics:

Time. Time Time
- === quantum -=---quantum

2n 2" classical 2" — classical

3
poly Approx Approx Approx

poly JEE on
SVP and mod-SVP, id-SVP [CDW17] id-SVP [PHS19,BR20]
(k>2) (in cyclotomic fields) (with 290" pre-processing)

[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.
[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.
[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.
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Hardness of SVP

Asymptotics:

Time Time Time
-==-=-quantum - === quantum
2" 2" classical 2" — classical
z 2 z
=
05| & 0s | & 05| 8
o :éa on E’ on :’ga
2 s 5
S S S
poly Approx  poly ' Approx  poly Approx
poly on® 2" poly on® 2" poly on®® 2n
SVP and mod-SVP id-SVP [CDW17] id-SVP [PHS19,BR20]
(k>2) (in cyclotomic fields) (with 290" pre-processing)

~+ max dim for SVP: 180

Practice: Darmstadt challenge'®
~» max dim for id-SVP: 150

N https://www.latticechallenge.org/
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https://www.latticechallenge.org/

Outline of the talk

© Algorithmic problems for cryptography
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Ring and Module-LWE

(search) mod-LWE,

Parameters: k,m,q € Z~q and a € R-¢

Objective: given (A, b) € OR*K x O, with
» A uniform in (’)?Xk

» s uniform in Of and e € OF such that o(e) « Dy
(Dy,» discrete Gaussian distribution over L with parameter o)
» b=As+e
output s

OK)ya'q

(can also be defined using X instead of o)
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Ring and Module-LWE

(search) mod-LWE,

Parameters: k,m,q € Z~q and a € R-¢

Objective: given (A, b) € OR*K x O, with
» A uniform in (’)?Xk

» s uniform in Of and e € OF such that o(e) « Dy
(Dy,» discrete Gaussian distribution over L with parameter o)
» b=As+e
output s

OK),CY'q

(can also be defined using X instead of o)

E RLWE = mod-LWE; ]
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Decision mod-L\WE

dec-mod-LWE,

Parameters: k,m,q € Zq and a € R5¢

Objective: distinguish between (A, b) and (A, u), where
» A and b are as on the previous slide

» uis uniform in O

Alice Pellet-Mary Algebraic lattices
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Decision mod-L\WE

dec-mod-LWE,

Parameters: k,m,q € Z~o and o € Ryg

Objective: distinguish between (A, b) and (A, u), where
» A and b are as on the previous slide

» uis uniform in O

E mod-LWE reduces to dec-mod-LWE [LS15] ]

[LS15] Langlois, Stehlé. Worst-case to average-case reductions for module lattices. DCC.

Alice Pellet-Mary Algebraic lattices
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Reductions

id-SvP (e
~ id-SIVP mod-SIVP; w
l[SSTXOE),LPRlO] [LSlS]l [LSlS]l
RLWE mod-LWE, mod-LWE;
[LPRlO]l T [st]l T [L515]l T
dec- dec-
dec-RLWE mod-LWE, w

/\ Arrows may not all compose (different parameters) /\

(References are for the first reductions. Better, more recent reductions may exist.)

[SSTX09] Stehlé, Steinfeld, Tanaka, Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt.

[LPR10] Lyubashevsky, Peikert, Regev. On ideal lattices and learning with errors over rings. Eurocrypt.

[LS15] Langlois, Stehlé. Worst-case to average-case reductions for module lattices. DCC.
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From mod-LWE, to mod-SIVP,.1

Reminder mod-LWE: (A,b=A-s+ e mod q)
with s € OF, e € OF and |lo(e)| = a-q

mod-LWE/ is a BDD in the rank-m module lattice

/\:a({xeO?\EIZGO@,X:Aimodq})

» BDD only if mis large enough

Alice Pellet-Mary Algebraic lattices 25/07/2022 20 /33



From mod-LWE, to mod-SIVP,.1
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Reminder mod-LWE: (A,b=A-s+ e mod q)
with s € OF, e € OF and |lo(e)| ~ a-q

mod-LWE/ is a BDD in the rank-m module lattice

/\:a({xeO?\EIZGO@,X:Aimodq})

» BDD only if mis large enough ~» how large?

» m =k is not sufficient
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From mod-LWE, to mod-SIVP,.1

Reminder mod-LWE: (A,b=A-s+ e mod q)
with s € OF, e € OF and |lo(e)| = a-q

mod-LWE/ is a BDD in the rank-m module lattice

/\:a({xeO?\EIZGO@,X:Aimodq})

» BDD only if mis large enough ~» how large?

» m =k is not sufficient

» m =k + 1 might be sufficient depending on « and g

log(q)
log(1/ )

» for k=1 m=2is possibleif a- ¢ < /q

» we need roughly m = k-
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From mod-LWE, to mod-SIVP,.1

Reminder mod-LWE: (A,b=A-s+ e mod q)
with s € OF, e € OF and |lo(e)| = a-q

mod-LWE/ is a BDD in the rank-m module lattice

/\za({XEO?\EIze(’);‘(,x:Aimodq})

» BDD only if mis large enough ~» how large?

» m =k is not sufficient

» m =k + 1 might be sufficient depending on « and g

log(q)
log(1/ )

» for k=1 m=2is possibleif a- ¢ < /q

» we need roughly m = k-

[ RLWE is at best a special case of mod-BDD ]
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Reductions

~ id-SIVP

RLWE

dec-RLWE

|
1

/

mod-SIVP,

|

mod-LWE>

I

dec-

mod-LWE>

/

—_——

mod-SIVP3

dec-
mod-LWE3
~ @@ @ -

7

/\ Arrows may not all compose (different parameters) /\

Alice Pellet-Mary Algebraic lattices
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Reductions

id-SVP
~ id-SIVP mod-SIVP; mod-SIVP3

—— i rwe |——— e |—

RLWE | _[ADI7] " | mod-LWE; | _[ADI7] *| mod-LWE3 | [ADI7] ° ---

I |

dec- dec-
mod-LWE> mod-LWE3

dec-RLWE

/\ Arrows may not all compose (different parameters) /\

[AD17] Albrecht, Deo. Large modulus ring-LWE > module-LWE. Asiacrypt.
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Reductions

~ id-SIVP

RLWE

dec-RLWE

|
1

~TADIT]
_

mod-SIVP;

l

mod-LWE>

I

dec-

mod-LWE>

[LPSW19,
MS20]
—

_—

—TADIT
(—

mod-SIVP3

"

mod-LWE3

ain

dec-

mod-LWE3

[MS20]

—TADIT " ---
(—

/\ Arrows may not all compose (different parameters) /\

[LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt.

[MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to

moduleSVP. Crypto.
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Reductions

id-SVP
~ id-SIVP

1

dec-RLWE

~TADIT]
_

mod-SIVP;

l

mod-LWE>

—
_

—TADIT
(—

mod-SIVP3

"

mod-LWE3

[MS20]

—TADIT " ---
(—

/\ Arrows may not all compose (different parameters) /\

[LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt.

[MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to

moduleSVP. Crypto.
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NTRU (a.k.a, partial Fourier recovery problem [HPS98])
(search) NTRU

Parameters: ¢ > B > 1 and 1 distribution over Ok outputting
elements < B

Objective: given h € Ok /(qOk), with
» f,g < 1 conditioned on g invertible modulo g
» h=f-glmodg

output (f, g)

(can also be defined using X instead of o)

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.
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NTRU (a.k.a, partial Fourier recovery problem [HPS98])

(search) NTRU
Parameters: ¢ > B > 1 and 1 distribution over Ok outputting

elements < B

Objective: given h € Ok /(qOk), with
» f,g < 1 conditioned on g invertible modulo g
» h=f-glmodg

output (f, g)

(can also be defined using X instead of o)

dec-NTRU
Parameters: g, B and ¢

Objective: distinguish between h as above and v uniform in Ok /(qOk)

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.
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Two regimes of NTRU

If B> ,/q - poly(d) If B <./q/poly(d)
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Two regimes of NTRU

If B> ,/q-poly(d) If B <./q/poly(d)

» his statistically close to uniform
mod ¢ [SS11,WW1g]

» dec-NTRU is statistically hard

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.
[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.
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Two regimes of NTRU

If B> ,/q-poly(d) If B <./q/poly(d)

» his not statistically close to

» his statistically close to uniform .
uniform mod g

mod ¢ [SS11,WW1g]

» dec-NTRU is statistically hard > NTRU is a special case of

unique-SVP

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.
[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

Alice Pellet-Mary Algebraic lattices



Two regimes of NTRU

If B> ,/q-poly(d) If B <./q/poly(d)

» his not statistically close to

» his statistically close to uniform .
uniform mod g

mod ¢ [SS11,WW1g]

» dec-NTRU is statistically hard > NTRU is a special case of

unique-SVP

[ For the rest of the talk, we consider B < ,/q }

[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt.
[WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.
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Reductions

id-SVP
~ id-SIVP

/\ Arrows may not all compose (different parameters) /\

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.
[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.
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Reductions

id-SVP

(—
~ id-SIVP -
|
NTRU RLWE :
NT.RU dec-RLWE
variant
[Pszl]l T [Peii'é] """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
dec-NTRU

/\ Arrows may not all compose (different parameters) /\

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.
[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.
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Reductions

id-SVP

(—
~ id-SIVP I
i
NTRU RLWE —
NT.RU dec-RLWE
variant
[Pszl]l T z[Peilé] """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
dec-NTRU - possibly crude reductions

/\ Arrows may not all compose (different parameters) /\

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.
[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.
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id-SVP

id-SVP is a lower bound
on the hardness of RLWE, mod-LWE, NTRU
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id-SVP

id-SVP is a lower bound
on the hardness of RLWE, mod-LWE, NTRU

Breaking id-SVP does not break:
» RLWE, mod-LWE, NTRU

» most lattice-based crypto using algebraic lattices
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id-SVP

id-SVP is a lower bound
on the hardness of RLWE, mod-LWE, NTRU

Breaking id-SVP does not break:
» RLWE, mod-LWE, NTRU

» most lattice-based crypto using algebraic lattices

Breaking id-SVP do break:
» some early FHE schemes

» the PV-Knap problem (see next slides)
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PV-Knap (a.k.a, partial Fourier recovery problem)

Notations:
» K =Q[X]/®n(X) with ®y cyclotomic polynomial
» Opy(a) =0if and only if « is a primitive N-th root of unity

[HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery
problem. ACNS.
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PV-Knap (a.k.a, partial Fourier recovery problem)
Notations:
» K =Q[X]/®n(X) with ®y cyclotomic polynomial
» Opy(a) =0if and only if « is a primitive N-th root of unity
» g=1mod N prime

» so that there exists a primitive N-th root of unity in Fq

[HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery
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PV-Knap (a.k.a, partial Fourier recovery problem)

Notations:
» K =Q[X]/®n(X) with ®y cyclotomic polynomial
» Opy(a) =0if and only if « is a primitive N-th root of unity

» g=1mod N prime

» so that there exists a primitive N-th root of unity in Fq

» S; C {w, roots of ®p in Fg} with size [S¢| =t (1<t < o(N))

[HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery
problem. ACNS.
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PV-Knap (a.k.a, partial Fourier recovery problem)
Notations:
» K =Q[X]/®n(X) with ®y cyclotomic polynomial
» ®y(a) =0if and only if a is a primitive N-th root of unity
» g=1mod N prime

» so that there exists a primitive N-th root of unity in Fq

» S; C {w, roots of ®p in Fg} with size [S¢| =t (1<t < o(N))

Partial Vandermonde Knapsack (PV-Knap) [HPS+14]

Parameters: g, Sy and B > 1
Objective: recover f from (f(w) mod q),es,, where

» =1f(X) € Ok is sampled randomly such that ||o(f)|| < B

(The original article worked in Q[X]/(X" — 1) and with )

[HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery
problem. ACNS.
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PV-Knap is an (ideal) lattice problem
PV-Knap

Objective: recover f from (f(w) mod q),es,, where

» f =1f(X) € Ok is sampled randomly such that ||o(f)|| < B

A few observations:

» easy to recover a large f such that f(w) = f(w) mod g, Yw € S;
~ polynomial interpolation in Fq

Alice Pellet-Mary Algebraic lattices 25/07/2022 27 /33



PV-Knap is an (ideal) lattice problem
PV-Knap

Objective: recover f from (f(w) mod q),es,, where

» f =1f(X) € Ok is sampled randomly such that ||o(f)|| < B

A few observations:

» easy to recover a large f such that f(w) = f(w) mod g, Yw € S;
~ polynomial interpolation in Fq

» Recovering small f from large f is a BDD in

A= J({g € Ok |g(w)=0mod q, Vw € St}>

(if parameters are well chosen)
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PV-Knap is an (ideal) lattice problem
PV-Knap

Objective: recover f from (f(w) mod q)yes,, where

»  =1f(X) € Ok is sampled randomly such that ||o(f)|| < B

A few observations:

» easy to recover a large f such that #(w) = f(w) mod g, Yw € S;
~ polynomial interpolation in Fq

» Recovering small f from large f is a BDD in
A= a({g € Ok lg(w)=0mod g, Vw € St})
(if parameters are well chosen)

» A is an ideal lattice [BSS22]

[BSS22] Boudgoust, Sakzad, and Steinfeld. Vandermonde meets Regev: Public Key Encryption Schemes Based on
Partial Vandermonde Problems. DCC.
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Hardness of PV-Knap
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Hardness of PV-Knap

» The reduction produces specific ideals
(they divide (q))
» PV-Knap might be easier than id-SVP

Warning:
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Hardness of PV-Knap

» The reduction produces specific ideals
(they divide (g))
» PV-Knap might be easier than id-SVP

Warning:

» if S; is badly chosen, id-SVP can be solved in poly time [EGP22]
» attacks on PV-Knap for bad choices of S;

[BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial
Vandermonde Knapsack Problem. Crypto.
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Outline of the talk

@ Some more number theory
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The Log function

Log : K — RY
y + (logly(a1)l,--- ,logly(aq)l)
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The Log function

log : K — RY
y = (logly (1), -, logly(aq)l)
Let1=(1,---,1)and H=1".
Properties (r € Ok)
. H Log(r2)
Logr=h+a-1, with he H 7
» Log(n - rn) =Log(n)+ Log(r) Loa ) | / Lo )

1
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The Log function

log : K — RY
y = (log|y(an)

)T ,|og|y(ozd)|)

Let1=(1,---,1)and H=1".

Properties (r € Ok)
Logr=h+a-1, with he H
» Log(n - rn) = Log(n) + Log(r)
» a>0

Log
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The Log function

log : K — RY
y = (logly(a1)l,--- ,log|y(aq)|)

Let1=(1,---,1)and H=1".
Properties (r € Ok)
Logr=h+a-1, with he H 1

» Log(n - rn) = Log(n) + Log(r)

» a>0 1

» a=20iff risa unit

A
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The Log function

log : K — RY
y = (logly(a1)l,--- ,log|y(aq)|)

Let1=(1,---,1)and H=1".
Properties (r € Ok)
Logr=h+a-1, with he H 1

» Log(n - rn) = Log(n) + Log(r)

» a>0 1

» a=20iff risa unit

A

The Log-unit lattice: A := Log(Ox) is a lattice in H.
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The Log function

log : K — RY
y = (logly(a1)l,--- ,log|y(aq)|)

Let1=(1,---,1)and H=1".
Properties (r € Ok)
Logr=h+a-1, with he H 1

» Log(n - rn) = Log(n) + Log(r)

» a>0 1

» a=20iff risa unit

> |rll = exp(|| Log r|sc) N

The Log-unit lattice: A := Log(Ox) is a lattice in H.
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Subfields

K Meaning:

| m » K contains L, which contains Q
L

| 2

Q
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Subfields

K Meaning:
| m » K contains L, which contains Q
|Lm » K is a L-vector space of degree [K : L] = m

» Lis a Q-vector space of degree [L: Q] = ny

(]
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Subfields

K Meaning:
| m » K contains L, which contains Q
|Lm » K is a L-vector space of degree [K : L] = m

» Lis a Q-vector space of degree [L: Q] = ny

(]

= K is a Q-vector space of degree ny - mp
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Subfields

K Meaning:
| m » K contains L, which contains Q
|L » K is a L-vector space of degree [K : L] =m
an » Lis a Q-vector space of degree [L: Q] = ny
= K is a Q-vector space of degree ny - mp
| 2
QIX]/(Xx* +1)
Example: 5
QIX]/(X? +1)
| 2
Q
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Automorphisms and subfields

In this slide K = Q[X]/(X9 + 1)
(or any Galois field)

Automorphisms: do1,- -+, 04 automorphisms of K
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Automorphisms and subfields

In this slide K = Q[X]/(X9 + 1)
(or any Galois field)

Automorphisms: do1,- -+, 04 automorphisms of K
Properties:

» if f € Ok then U,‘(f) € Ok

> |lo(f)|| = llo(ai(F))]], for all f € K
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Automorphisms and subfields

In this slide K = Q[X]/(X9 + 1)
(or any Galois field)

Automorphisms: do1,- -+, 04 automorphisms of K

Properties:
» if f € Ok then U,‘(f) € Ok
lo(F)]| = |lo(oi(F))], for all f € K

Subfields: If L subfield of K, there exist S; C {1,---,d} s.t.
» S =[K:L]-1

» forall f e K,
NK/L = f H U,(f
i€Sy

25/07/2022 32/33



Conclusion

Ideals vs modules of rank > 2:

» there seem to be a gap in hardness between id-SVP and mod-SIVP>,
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Conclusion

Ideals vs modules of rank > 2:

» there seem to be a gap in hardness between id-SVP and mod-SIVP>,

Crypto problems:
» most problems used in crypto are module problems of rank > 2

» RLWE and mod-LWE =~ mod-SIVP,
» id-SVP < NTRU < mod-SIVP; (where exactly?)
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Conclusion
Ideals vs modules of rank > 2:
» there seem to be a gap in hardness between id-SVP and mod-SIVP>,

Crypto problems:
» most problems used in crypto are module problems of rank > 2

» RLWE and mod-LWE =~ mod-SIVP,
» id-SVP < NTRU < mod-SIVP;  (where exactly?)

» but some problems are ideal problems
» PV-Knap < id-SVP

Next talk: attacks that exploit the algebraic structure

Alice Pellet-Mary Algebraic lattices 25/07/2022 33/33



Conclusion
Ideals vs modules of rank > 2:
» there seem to be a gap in hardness between id-SVP and mod-SIVP>,

Crypto problems:
» most problems used in crypto are module problems of rank > 2

» RLWE and mod-LWE =~ mod-SIVP,
» id-SVP < NTRU < mod-SIVP;  (where exactly?)

» but some problems are ideal problems
» PV-Knap < id-SVP

Next talk: attacks that exploit the algebraic structure

Thank you
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