### Algebraic lattices for cryptography

#### Alice Pellet-Mary

CNRS and university of Bordeaux, France

Fundations and applications of lattice-based cryptography workshop 25-28 July 2022, Edinburgh



université BORDEAUX

### Algebraic lattices

#### What are they:

- ▶ lattices
- but also algebraic objects (e.g., ideals and modules in a number field)

## Algebraic lattices

#### What are they:

- lattices
- ▶ but also algebraic objects (e.g., ideals and modules in a number field)

#### Why use them:

- mainly for efficiency (faster primitives, smaller keys)
- also sometimes for the algebraic properties

(e.g., the first FHE schemes, or some iO candidates)

# Algebraic lattices

#### What are they:

- lattices
- but also algebraic objects (e.g., ideals and modules in a number field)

#### Why use them:

- mainly for efficiency (faster primitives, smaller keys)
- ▶ also sometimes for the algebraic properties (e.g., the first FHE schemes, or some iO candidates)

#### What about security:

- most of the time no better attacks than for unstructured lattices
- but for some problems, we have specific attacks using the algebraic structure (cf second talk)

#### Outline of the talk

- A bit of number theory
- Algebraic lattices
- 3 Algorithmic problems for cryptography
- 4 Some more number theory

#### Outline of the talk

- A bit of number theory

4 / 33

Number field: 
$$K = \mathbb{Q}[X]/P(X)$$
 (P irreducible,  $deg(P) = d$ )

Number field: 
$$K = \mathbb{Q}[X]/P(X)$$
 (P irreducible,  $deg(P) = d$ )

- $K = \mathbb{O}$
- $ightharpoonup K = \mathbb{Q}[X]/(X^d+1)$  with  $d=2^\ell \leadsto$  power-of-two cyclotomic field
- $ightharpoonup K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\leadsto$  NTRUPrime field

### Number field: $K = \mathbb{Q}[X]/P(X)$ (P irreducible, deg(P) = d)

- $ightharpoonup K=\mathbb{Q}$
- $ightharpoonup K = \mathbb{Q}[X]/(X^d+1)$  with  $d=2^\ell \leadsto$  power-of-two cyclotomic field
- $ightharpoonup K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime field

Ring of integers:  $\mathcal{O}_K \subset K$ , for this talk  $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$  (more generally  $\mathbb{Z}[X]/P(X) \subseteq \mathcal{O}_K$  but  $\mathcal{O}_K$  can be larger)

### Number field: $K = \mathbb{Q}[X]/P(X)$ (P irreducible, deg(P) = d)

- $ightharpoonup K=\mathbb{Q}$
- $ightharpoonup K = \mathbb{Q}[X]/(X^d+1)$  with  $d=2^\ell \leadsto$  power-of-two cyclotomic field
- ▶  $K = \mathbb{Q}[X]/(X^d X 1)$  with d prime  $\rightsquigarrow$  NTRUPrime field

# Ring of integers: $\mathcal{O}_K \subset K$ , for this talk $\mathcal{O}_K = \mathbb{Z}[X]/P(X)$ (more generally $\mathbb{Z}[X]/P(X) \subseteq \mathcal{O}_K$ but $\mathcal{O}_K$ can be larger)

- $ightharpoonup \mathcal{O}_K = \mathbb{Z}$
- $ightharpoonup \mathcal{O}_K = \mathbb{Z}[X]/(X^d+1)$  with  $d=2^\ell \leadsto$  power-of-two cyclotomic ring
- $ightharpoonup \mathcal{O}_K = \mathbb{Z}[X]/(X^d-X-1)$  with d prime  $\leadsto$  NTRUPrime ring of integers

Alice Pellet-Mary

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$

Coefficient embedding: 
$$\Sigma: K \to \mathbb{R}^d$$
 
$$\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$$

Canonical embedding: 
$$\sigma: K \to \mathbb{C}^d$$
  $y(X) \mapsto (y(\alpha_1), \cdots, y(\alpha_d))$ 

 $\blacktriangleright$  both embeddings induce a (different) geometry on K

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$

Coefficient embedding: 
$$\Sigma: \mathcal{K} \to \mathbb{R}^d$$

$$\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$$

Canonical embedding: 
$$\sigma: K \to \mathbb{C}^d$$
  $y(X) \mapsto (y(\alpha_1), \cdots, y(\alpha_d))$ 

 $\blacktriangleright$  both embeddings induce a (different) geometry on K

#### Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

6 / 33

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$

Coefficient embedding: 
$$\Sigma: \mathcal{K} \to \mathbb{R}^d$$
 
$$\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$$

Canonical embedding: 
$$\sigma: K \to \mathbb{C}^d$$
  $y(X) \mapsto (y(\alpha_1), \cdots, y(\alpha_d))$ 

 $\triangleright$  both embeddings induce a (different) geometry on K

#### Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions (nice mathematical properties)

$$(K = \mathbb{Q}[X]/P(X), \quad \alpha_1, \cdots, \alpha_d \text{ complex roots of } P(X))$$

Coefficient embedding: 
$$\Sigma: \mathcal{K} \to \mathbb{R}^d$$
 
$$\sum_{i=0}^{d-1} y_i X^i \mapsto (y_0, \cdots, y_{d-1})$$

Canonical embedding: 
$$\sigma: \qquad \qquad \mathcal{K} \rightarrow \mathbb{C}^d \\ y(X) \mapsto (y(\alpha_1), \cdots, y(\alpha_d))$$

 $\triangleright$  both embeddings induce a (different) geometry on K

#### Which embedding should we choose?

- coefficient embedding is used for constructions (efficient implementation)
- canonical embedding is used in cryptanalysis / reductions
   (nice mathematical properties)
- lacksquare for fields used in crypto, both geometries are pprox the same

Ideal:  $I \subseteq \mathcal{O}_K$  is an ideal if

- ▶  $x + y \in I$  for all  $x, y \in I$
- ▶  $a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$

Ideal:  $I \subseteq \mathcal{O}_K$  is an ideal if

- $x + y \in I$  for all  $x, y \in I$
- ▶  $a \cdot x \in I$  for all  $a \in \mathcal{O}_K$  and  $x \in I$
- $lackbox{I}_1 = \{2a \mid a \in \mathbb{Z}\} \text{ and } J_1 = \{6a \mid a \in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z}$
- ▶  $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, \ a, b \in \mathbb{Z}\}$  in  $\mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)$

```
Ideal: I \subseteq \mathcal{O}_K is an ideal if \qquad \qquad x+y \in I for all x,y \in I \qquad \qquad a \cdot x \in I for all a \in \mathcal{O}_K and x \in I \qquad \qquad \qquad \bowtie I_1 = \{2a \mid a \in \mathbb{Z}\} \text{ and } J_1 = \{6a \mid a \in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z} \qquad \qquad \bowtie I_2 = \{a+b\cdot X \mid a+b=0 \mod 2, \ a,b\in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z}[X]/(X^2+1) Multiplication: I \cdot J := \{\sum_{i=1}^r a_i \cdot b_i \mid r > 0, \ a_i \in I, \ b_i \in J\} \qquad \qquad \Rightarrow \text{ this is also an ideal}
```

```
x + y \in I for all x, y \in I
Ideal: I \subseteq \mathcal{O}_K is an ideal if
                                                           ▶ a \cdot x \in I for all a \in \mathcal{O}_K and x \in I
     \blacktriangleright I_1 = \{2a \mid a \in \mathbb{Z}\} \text{ and } J_1 = \{6a \mid a \in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z}
     I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, a, b \in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)
Multiplication: I \cdot J := \{ \sum_{i=1}^r a_i \cdot b_i \mid r > 0, a_i \in I, b_i \in J \}

    ★ this is also an ideal
     I_1 \cdot J_1 = \{12a \mid a \in \mathbb{Z}\}\
Algebraic norm: \mathcal{N}(I) := |\mathcal{O}_{K}/I| ("size" of I)
                             \rightsquigarrow norm is multiplicative: \mathcal{N}(IJ) = \mathcal{N}(I)\mathcal{N}(J)
```

7 / 33

```
x + y \in I for all x, y \in I
Ideal: I \subseteq \mathcal{O}_K is an ideal if
                                                             ▶ a \cdot x \in I for all a \in \mathcal{O}_K and x \in I
     \blacktriangleright I_1 = \{2a \mid a \in \mathbb{Z}\} \text{ and } J_1 = \{6a \mid a \in \mathbb{Z}\} \text{ in } \mathcal{O}_K = \mathbb{Z}
     ▶ I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, \ a, b \in \mathbb{Z}\} in \mathcal{O}_K = \mathbb{Z}[X]/(X^2 + 1)
Multiplication: I \cdot J := \{ \sum_{i=1}^r a_i \cdot b_i \mid r > 0, a_i \in I, b_i \in J \}

    ★ this is also an ideal
     I_1 \cdot J_1 = \{12a \mid a \in \mathbb{Z}\}\
Algebraic norm: \mathcal{N}(I) := |\mathcal{O}_{K}/I| ("size" of I)
                              \rightsquigarrow norm is multiplicative: \mathcal{N}(IJ) = \mathcal{N}(I)\mathcal{N}(J)
     \triangleright \mathcal{N}(I_1) = 2 and \mathcal{N}(J_1) = 6
     \triangleright \mathcal{N}(b) = 2
```

Units: 
$$O_K^{\times} = \{ a \in O_K \mid \exists b \in O_K, ab = 1 \}$$

Units: 
$$O_K^{\times} = \{ a \in O_K \mid \exists b \in O_K, ab = 1 \}$$

- $\blacktriangleright \mathbb{Z}^{\times} = \{-1, 1\}$
- $\blacktriangleright (\mathbb{Z}[X]/(X^2+1))^{\times} = \{-1,1,-X,X\}$
- $(\mathbb{Z}[X]/(X^4+1))^{\times} = \{\pm (1+X+X^2)^i \mid i \in \mathbb{Z} \}$
- ightharpoonup in general,  $\mathcal{O}_{K}^{\times}$  is infinite

Units: 
$$O_K^{\times} = \{a \in O_K \mid \exists b \in O_K, ab = 1\}$$

$$\triangleright \mathbb{Z}^{\times} = \{-1, 1\}$$

$$\triangleright (\mathbb{Z}[X]/(X^2 + 1))^{\times} = \{-1, 1, -X, X\}$$

$$\triangleright (\mathbb{Z}[X]/(X^4 + 1))^{\times} = \{\pm (1 + X + X^2)^i \mid i \in \mathbb{Z}\}$$

$$\triangleright \text{ in general, } \mathcal{O}_K^{\times} \text{ is infinite}$$

Principal ideals:  $\langle g \rangle := \{ g \cdot a \mid a \in O_K \}$ 

Units: 
$$O_K^{\times} = \{ a \in O_K \mid \exists b \in O_K, ab = 1 \}$$

- $ightharpoonup \mathbb{Z}^{\times} = \{-1, 1\}$
- $\blacktriangleright (\mathbb{Z}[X]/(X^2+1))^{\times} = \{-1,1,-X,X\}$
- $(\mathbb{Z}[X]/(X^4+1))^{\times} = \{ \pm (1+X+X^2)^i \mid i \in \mathbb{Z} \}$
- $\blacktriangleright$  in general,  $\mathcal{O}_K^{\times}$  is infinite

### Principal ideals: $\langle g \rangle := \{ g \cdot a \mid a \in O_K \}$

- ▶  $l_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, \ a, b \in \mathbb{Z}\} = \langle 1 + X \rangle$

Units: 
$$O_K^{\times} = \{ a \in O_K \mid \exists b \in O_K, ab = 1 \}$$

- $\blacktriangleright \mathbb{Z}^{\times} = \{-1, 1\}$
- $\blacktriangleright (\mathbb{Z}[X]/(X^2+1))^{\times} = \{-1,1,-X,X\}$
- $(\mathbb{Z}[X]/(X^4+1))^{\times} = \{ \pm (1+X+X^2)^i \mid i \in \mathbb{Z} \}$
- $\blacktriangleright$  in general,  $\mathcal{O}_K^{\times}$  is infinite

### Principal ideals: $\langle g \rangle := \{ g \cdot a \mid a \in O_{\mathcal{K}} \}$

- $I_1 = \{2a \mid a \in \mathbb{Z}\} = \langle 2 \rangle$
- ▶  $I_2 = \{a + b \cdot X \mid a + b = 0 \mod 2, \ a, b \in \mathbb{Z}\} = \langle 1 + X \rangle$
- ightharpoonup g is a generator of  $\langle g \rangle$
- { generators of  $\langle g \rangle$  } = { $gu \mid u \in O_K^{\times}$ }
- $ightharpoonup \mathcal{N}(\langle g \rangle) = |\mathcal{N}(g)|$ , where  $\mathcal{N}(g) = \prod_i g(\alpha_i)$  ( $\alpha_i$  complex roots of P(X))

#### Outline of the talk

- A bit of number theory
- 2 Algebraic lattices
- 3 Algorithmic problems for cryptography
- 4 Some more number theory

#### $\mathcal{O}_K$ is a lattice:

- $\mathcal{O}_K = 1 \cdot \mathbb{Z} + X \cdot \mathbb{Z} + \cdots + X^{d-1} \cdot \mathbb{Z}$

#### $\mathcal{O}_K$ is a lattice:

- $\mathcal{O}_K = 1 \cdot \mathbb{Z} + X \cdot \mathbb{Z} + \cdots + X^{d-1} \cdot \mathbb{Z}$

 $\sigma(\mathcal{O}_K)$  is a lattice of rank d in  $\mathbb{C}^d\simeq\mathbb{R}^{2d}$  with basis  $(\sigma(X^i))_{0\leq i< d}$ 

#### $\mathcal{O}_K$ is a lattice:

- $\mathcal{O}_K = 1 \cdot \mathbb{Z} + X \cdot \mathbb{Z} + \cdots + X^{d-1} \cdot \mathbb{Z}$

 $\sigma(\mathcal{O}_K)$  is a lattice of rank d in  $\mathbb{C}^d\simeq\mathbb{R}^{2d}$  with basis  $(\sigma(X^i))_{0\leq i< d}$ 

#### $\langle g \rangle$ is a lattice:

#### $\mathcal{O}_K$ is a lattice:

- $\mathcal{O}_{K} = 1 \cdot \mathbb{Z} + X \cdot \mathbb{Z} + \cdots + X^{d-1} \cdot \mathbb{Z}$
- $\qquad \sigma(\mathcal{O}_K) = \sigma(1) \cdot \mathbb{Z} + \cdots + \sigma(X^{d-1}) \cdot \mathbb{Z}$

$$\sigma(\mathcal{O}_K)$$
 is a lattice of rank  $d$  in  $\mathbb{C}^d\simeq \mathbb{R}^{2d}$  with basis  $(\sigma(X^i))_{0\leq i< d}$ 

#### $\langle g \rangle$ is a lattice:

$$\sigma(\langle g \rangle)$$
 is a lattice of rank  $d$  in  $\mathbb{C}^d \simeq \mathbb{R}^{2d}$  with basis  $(\sigma(g \cdot X^i))_{0 \leq i < d}$ 

(this is also true for non principal ideals)





Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 





Basis of 
$$\langle g \rangle$$
:  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 

$$egin{pmatrix} g_0 \ g_1 \ dots \ g_{d-1} \end{pmatrix}$$

(in 
$$K = \mathbb{Q}[X]/X^d + 1$$
)



Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 

$$egin{pmatrix} g_0 & -g_{d-1} \ g_1 & g_0 \ dots & dots \ g_{d-1} & g_{d-2} \end{pmatrix}$$

(in 
$$K = \mathbb{Q}[X]/X^d + 1$$
)

# Ideal lattices (2)



Basis of  $\langle g \rangle$ :  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 

$$egin{pmatrix} g_0 & -g_{d-1} & \cdots & -g_1 \ g_1 & g_0 & \cdots & -g_2 \ dots & dots & dots \ g_{d-1} & g_{d-2} & \cdots & g_0 \end{pmatrix}$$

(in 
$$K = \mathbb{Q}[X]/X^d + 1$$
)

# Ideal lattices (2)



Basis of 
$$\langle g \rangle$$
:  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 

$$egin{pmatrix} g_0 & -g_{d-1} & \cdots & -g_1 \ g_1 & g_0 & \cdots & -g_2 \ dots & dots & dots \ g_{d-1} & g_{d-2} & \cdots & g_0 \end{pmatrix}$$

$$(\text{in } K = \mathbb{Q}[X]/X^d + 1)$$

Discriminant:  $\Delta_K := \sqrt{\operatorname{vol}(\sigma(\mathcal{O}_K))}$ 

# Ideal lattices (2)



Basis of 
$$\langle g \rangle$$
:  $g, g \cdot X, \cdots, g \cdot X^{d-1}$ 

$$\begin{pmatrix} g_0 & -g_{d-1} & \cdots & -g_1 \\ g_1 & g_0 & \cdots & -g_2 \\ \vdots & \vdots & \ddots & \vdots \\ g_{d-1} & g_{d-2} & \cdots & g_0 \end{pmatrix}$$

$$(\text{in } K = \mathbb{Q}[X]/X^d + 1)$$

Discriminant: 
$$\Delta_K := \sqrt{\operatorname{vol}(\sigma(\mathcal{O}_K))}$$

Volume of an ideal: 
$$vol(\sigma(I)) = \mathcal{N}(I) \cdot \sqrt{\Delta_K}$$

#### (Free) module:

 $M=\{B\cdot x\,|\,x\in\mathcal{O}_K^k\}$  for some matrix  $B\in\mathcal{O}_K^{k imes k}$  with  $\det_{\mathcal{K}}(B)
eq 0$ 

#### (Free) module:

$$M=\{B\cdot x\,|\,x\in\mathcal{O}_K^k\}$$
 for some matrix  $B\in\mathcal{O}_K^{k imes k}$  with  $\det_K(B)
eq 0$ 

- k is the module rank
- B is a module basis of M
   (if the module is not free, it has a "pseudo-basis" instead)

### $\sigma(M)$ is a lattice:

lacksquare of  $\mathbb{Z}$ -rank  $n:=d\cdot k$ , included in  $\mathbb{C}^n$ 

#### (Free) module:

$$M=\{B\cdot x\,|\,x\in\mathcal{O}_K^k\}$$
 for some matrix  $B\in\mathcal{O}_K^{k imes k}$  with  $\det_K(B)
eq 0$ 

- k is the module rank
- ▶ B is a module basis of M (if the module is not free, it has a "pseudo-basis" instead)

### $\sigma(M)$ is a lattice:

- lacksquare of  $\mathbb{Z}$ -rank  $n:=d\cdot k$ , included in  $\mathbb{C}^n$
- with basis  $(\sigma(b_i X^j))_{\substack{1 \le i \le k \\ 0 \le j < d}}$  ( $b_i$  columns of B)

#### (Free) module:

$$M=\{B\cdot x\,|\,x\in\mathcal{O}_K^k\}$$
 for some matrix  $B\in\mathcal{O}_K^{k imes k}$  with  $\det_K(B)
eq 0$ 

- k is the module rank
- B is a module basis of M
   (if the module is not free, it has a "pseudo-basis" instead)

### $\sigma(M)$ is a lattice:

- lacksquare of  $\mathbb{Z}$ -rank  $n:=d\cdot k$ , included in  $\mathbb{C}^n$
- with basis  $(\sigma(b_i X^j))_{\substack{1 \le i \le k \\ 0 \le j < d}}$  ( $b_i$  columns of B)
- $ightharpoonup \operatorname{vol}(M) = |\mathcal{N}(\det_K(B))| \cdot \Delta_K^{k/2}$

### Modules vs ideals

```
egin{array}{lll} \mbox{Ideal} &=& \mbox{Module of rank 1} \ \mbox{(principal ideal} &=& \mbox{free module of rank 1)} \end{array}
```

#### Modules vs ideals

In 
$$K = \mathbb{Q}[X]/(X^d + 1)$$
:

$$M_a = \begin{pmatrix} a_1 & -a_d & \cdots & -a_2 \\ a_2 & a_1 & \cdots & -a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_d & a_{d-1} & \cdots & a_1 \end{pmatrix}$$

basis of a principal ideal lattice



basis of a free module lattice of rank k

# Algorithmic problems



# Algorithmic problems



#### Notations:

- ▶ id-X = problem X restricted to ideal lattices
- ightharpoonup mod- $X_k$  = problem X restricted to module lattices of rank k

Alice Pellet-Mary Algebraic lattices 25/07/2022 14 / 33

### Hardness of SVP

#### Asymptotics:



SVP and mod-SVP<sub>k</sub>  $(k \ge 2)$ 

id-SVP [CDW17] (in cyclotomic fields) id-SVP [PHS19,BR20] (with  $2^{O(n)}$  pre-processing)

[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt. [PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.

Alice Pellet-Mary Algebraic lattices 25/07/2022 15/33

### Hardness of SVP

#### Asymptotics:







SVP and mod-SVP<sub>k</sub> (k > 2)

id-SVP [CDW17] (in cyclotomic fields) id-SVP [PHS19,BR20] (with  $2^{O(n)}$  pre-processing)

Practice: Darmstadt challenge 1

→ max dim for SVP: 180

→ max dim for id-SVP: 150

<sup>1</sup> https://www.latticechallenge.org/

### Outline of the talk

- A bit of number theory
- Algebraic lattices
- 3 Algorithmic problems for cryptography
- 4 Some more number theory

# Ring and Module-LWE

## (search) $mod-LWE_k$

Parameters:  $k, m, q \in \mathbb{Z}_{>0}$  and  $\alpha \in \mathbb{R}_{>0}$ 

Objective: given  $(A,b) \in \mathcal{O}_K^{m \times k} \times \mathcal{O}_K^m$ , with

- ▶ A uniform in  $\mathcal{O}_K^{m \times k}$
- lacksquare s uniform in  $\mathcal{O}_K^k$  and  $e \in \mathcal{O}_K^m$  such that  $\sigma(e) \leftarrow D_{\sigma(\mathcal{O}_K), \alpha \cdot q}$   $(D_{L,\sigma}$  discrete Gaussian distribution over L with parameter  $\sigma$ )
- b = As + e

#### output s

(can also be defined using  $\Sigma$  instead of  $\sigma$ )

# Ring and Module-LWE

### (search) $mod-LWE_k$

Parameters:  $k, m, q \in \mathbb{Z}_{>0}$  and  $\alpha \in \mathbb{R}_{>0}$ 

Objective: given  $(A, b) \in \mathcal{O}_K^{m \times k} \times \mathcal{O}_K^m$ , with

- ▶ A uniform in  $\mathcal{O}_K^{m \times k}$
- ▶ s uniform in  $\mathcal{O}_K^k$  and  $e \in \mathcal{O}_K^m$  such that  $\sigma(e) \leftarrow D_{\sigma(\mathcal{O}_K), \alpha \cdot q}$  ( $\mathcal{O}_{L,\sigma}$  discrete Gaussian distribution over L with parameter  $\sigma$ )
- b = As + e

#### output s

(can also be defined using  $\Sigma$  instead of  $\sigma$ )

 $RLWE = mod-LWE_1$ 

### Decision mod-LWE

### $dec-mod-LWE_k$

Parameters:  $k, m, q \in \mathbb{Z}_{>0}$  and  $\alpha \in \mathbb{R}_{>0}$ 

Objective: distinguish between (A, b) and (A, u), where

- ▶ A and b are as on the previous slide
- ightharpoonup u is uniform in  $\mathcal{O}_{\kappa}^{m}$

#### Decision mod-LWE

### dec-mod-LWEk

Parameters:  $k, m, q \in \mathbb{Z}_{>0}$  and  $\alpha \in \mathbb{R}_{>0}$ 

Objective: distinguish between (A, b) and (A, u), where

- A and b are as on the previous slide
- u is uniform in  $\mathcal{O}_{\kappa}^{m}$

 $mod-LWE_k$  reduces to dec-mod-LWE<sub>k</sub> [LS15]

[LS15] Langlois, Stehlé, Worst-case to average-case reductions for module lattices, DCC.



Arrows may not all compose (different parameters)  $\wedge$ 



(References are for the first reductions. Better, more recent reductions may exist.)

<sup>[</sup>SSTX09] Stehlé, Steinfeld, Tanaka, Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt. [LPR10] Lyubashevsky, Peikert, Regev. On ideal lattices and learning with errors over rings. Eurocrypt. [LS15] Langlois, Stehlé, Worst-case to average-case reductions for module lattices, DCC.

Reminder mod-LWE<sub>k</sub>: 
$$(A, b = A \cdot s + e \mod q)$$
  
with  $s \in \mathcal{O}_K^k$ ,  $e \in \mathcal{O}_K^m$  and  $\|\sigma(e)\| \approx \alpha \cdot q$ 

 $mod-LWE_k$  is a BDD in the rank-m module lattice

$$\Lambda = \sigma \Big( \big\{ x \in \mathcal{O}_K^m \, | \, \exists z \in \mathcal{O}_K^k, \, x = A \cdot z \bmod q \big\} \Big)$$

ightharpoonup BDD only if m is large enough

Reminder mod-LWE<sub>k</sub>: 
$$(A, b = A \cdot s + e \mod q)$$
  
with  $s \in \mathcal{O}_K^k$ ,  $e \in \mathcal{O}_K^m$  and  $\|\sigma(e)\| \approx \alpha \cdot q$ 

 $mod-LWE_k$  is a BDD in the rank-m module lattice

$$\Lambda = \sigma \Big( \big\{ x \in \mathcal{O}_K^m \, | \, \exists z \in \mathcal{O}_K^k, \, x = A \cdot z \bmod q \big\} \Big)$$

▶ BDD only if m is large enough  $\rightsquigarrow$  how large?

Reminder mod-LWE<sub>k</sub>: 
$$(A, b = A \cdot s + e \mod q)$$
  
with  $s \in \mathcal{O}_K^k$ ,  $e \in \mathcal{O}_K^m$  and  $\|\sigma(e)\| \approx \alpha \cdot q$ 

 $mod-LWE_k$  is a BDD in the rank-m module lattice

$$\Lambda = \sigma\Big(\big\{x \in \mathcal{O}_K^m \,|\, \exists z \in \mathcal{O}_K^k, \, x = A \cdot z \bmod q\big\}\Big)$$

- ▶ BDD only if m is large enough  $\rightsquigarrow$  how large?
- m = k is not sufficient

Reminder mod-LWE<sub>k</sub>: 
$$(A, b = A \cdot s + e \mod q)$$
  
with  $s \in \mathcal{O}_K^k$ ,  $e \in \mathcal{O}_K^m$  and  $\|\sigma(e)\| \approx \alpha \cdot q$ 

 $mod-LWE_k$  is a BDD in the rank-m module lattice

$$\Lambda = \sigma \Big( \big\{ x \in \mathcal{O}_K^m \, | \, \exists z \in \mathcal{O}_K^k, \, x = A \cdot z \bmod q \big\} \Big)$$

- ▶ BDD only if m is large enough  $\rightsquigarrow$  how large?
- = m = k is not sufficient
- lacksquare m=k+1 might be sufficient depending on lpha and  $oldsymbol{q}$ 
  - we need roughly  $m = k \cdot \frac{\log(q)}{\log(1/\alpha)}$
  - for k=1, m=2 is possible if  $\alpha \cdot q \lesssim \sqrt{q}$

Reminder mod-LWE<sub>k</sub>: 
$$(A, b = A \cdot s + e \mod q)$$
  
with  $s \in \mathcal{O}_K^k$ ,  $e \in \mathcal{O}_K^m$  and  $\|\sigma(e)\| \approx \alpha \cdot q$ 

 $mod-LWE_k$  is a BDD in the rank-m module lattice

$$\Lambda = \sigma \Big( \big\{ x \in \mathcal{O}_K^m \, | \, \exists z \in \mathcal{O}_K^k, \, x = A \cdot z \bmod q \big\} \Big)$$

- ▶ BDD only if m is large enough  $\rightsquigarrow$  how large?
- = m = k is not sufficient
- lacksquare m=k+1 might be sufficient depending on lpha and  $oldsymbol{q}$ 
  - we need roughly  $m = k \cdot \frac{\log(q)}{\log(1/\alpha)}$
  - for k=1, m=2 is possible if  $\alpha \cdot q \lesssim \sqrt{q}$

RLWE is at best a special case of mod-BDD<sub>2</sub>



⚠ Arrows may not all compose (different parameters) ⚠

Alice Pellet-Mary Algebraic lattices 25/07/2022 21/33



⚠ Arrows may not all compose (different parameters) ⚠



Alice Pellet-Mary Algebraic lattices 25/07/2022



Arrows may not all compose (different parameters)  $\wedge$ 

Alice Pellet-Mary 25/07/2022 21 / 33

<sup>[</sup>LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt.

<sup>[</sup>MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to moduleSVP. Crypto.



Arrows may not all compose (different parameters) A

Alice Pellet-Mary 25/07/2022 21 / 33

<sup>[</sup>LPSW19] Lee, Pellet-Mary, Stehlé, and Wallet. An LLL algorithm for module lattices. Asiacrypt.

<sup>[</sup>MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce moduleSVP to moduleSVP. Crypto.

## NTRU (a.k.a, partial Fourier recovery problem [HPS98])

### (search) NTRU

Parameters:  $q \geq B > 1$  and  $\psi$  distribution over  $\mathcal{O}_K$  outputting elements  $\leq B$ 

Objective: given  $h \in \mathcal{O}_K/(q\mathcal{O}_K)$ , with

- $f, g \leftarrow \psi$  conditioned on g invertible modulo q
- $h = f \cdot g^{-1} \bmod q$

output (f,g)

(can also be defined using  $\Sigma$  instead of  $\sigma$ )

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

## NTRU (a.k.a, partial Fourier recovery problem [HPS98])

### (search) NTRU

Parameters:  $q \geq B > 1$  and  $\psi$  distribution over  $\mathcal{O}_{\mathcal{K}}$  outputting

 $elements \leq B$ 

Objective: given  $h \in \mathcal{O}_K/(q\mathcal{O}_K)$ , with

- $f, g \leftarrow \psi$  conditioned on g invertible modulo q
- $h = f \cdot g^{-1} \bmod q$

output (f,g)

(can also be defined using  $\Sigma$  instead of  $\sigma$ )

#### dec-NTRU

Parameters:  $oldsymbol{q}, oldsymbol{B}$  and  $\psi$ 

Objective: distinguish between h as above and u uniform in  $\mathcal{O}_K/(q\mathcal{O}_K)$ 

[HPS98] Hoffstein, Pipher, and Silverman. NTRU: a ring based public key cryptosystem. ANTS.

If 
$$B \ge \sqrt{q} \cdot \operatorname{poly}(d)$$

If 
$$B \leq \sqrt{q}/\text{poly}(d)$$

If 
$$B \ge \sqrt{q} \cdot \operatorname{poly}(d)$$

If  $B \leq \sqrt{q}/\text{poly}(d)$ 

23 / 33

- h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

Alice Pellet-Mary Algebraic lattices 25/07/2022

<sup>[</sup>SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

If 
$$B \ge \sqrt{q} \cdot \operatorname{poly}(d)$$

- ► h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

If 
$$B \leq \sqrt{q}/\text{poly}(d)$$

23 / 33

- h is not statistically close to uniform mod q
- NTRU is a special case of unique-SVP

Alice Pellet-Mary Algebraic lattices 25/07/2022

<sup>[</sup>SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

If 
$$B \ge \sqrt{q} \cdot \operatorname{poly}(d)$$

- h is statistically close to uniform mod q [SS11,WW18]
- dec-NTRU is statistically hard

If 
$$B \leq \sqrt{q}/\text{poly}(d)$$

23 / 33

- h is not statistically close to uniform mod q
- NTRU is a special case of unique-SVP

For the rest of the talk, we consider  $B \ll \sqrt{q}$ 

Alice Pellet-Mary Algebraic lattices 25/07/2022

<sup>[</sup>SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.



Arrows may not all compose (different parameters) 🗥

 $[Pei16] \ Peikert. \ A \ decade \ of \ lattice \ cryptography. \ Foundations \ and \ Trends \ in \ TCS.$ 

[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.

Alice Pellet-Mary Algebraic lattices 25/07/2022 24 / 33



Arrows may not all compose (different parameters) A

 $[Pei16] \ Peikert. \ A \ decade \ of \ lattice \ cryptography. \ Foundations \ and \ Trends \ in \ TCS.$ 

[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.

Alice Pellet-Mary Algebraic lattices 25/07/2022 24 / 33

#### Reductions



Arrows may not all compose (different parameters) A

 $[Pei16] \ Peikert. \ A \ decade \ of \ lattice \ cryptography. \ Foundations \ and \ Trends \ in \ TCS.$ 

[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.

Alice Pellet-Mary Algebraic lattices 25/07/2022 24 / 33

### id-SVP

id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

### id-SVP

id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

#### Breaking id-SVP does not break:

- RLWE, mod-LWE, NTRU
- most lattice-based crypto using algebraic lattices

### id-SVP

id-SVP is a lower bound on the hardness of RLWE, mod-LWE, NTRU

#### Breaking id-SVP does not break:

- RLWE, mod-LWE, NTRU
- most lattice-based crypto using algebraic lattices

#### Breaking id-SVP do break:

- some early FHE schemes
- the PV-Knap problem (see next slides)

Alice Pellet-Mary Algebraic lattices 25/07/2022 25/33

#### Notations:

- $ightharpoonup K=\mathbb{Q}[X]/\Phi_N(X)$  with  $\Phi_N$  cyclotomic polynomial
  - $lackbox{\Phi}_N(\alpha) = 0$  if and only if  $\alpha$  is a primitive N-th root of unity

Alice Pellet-Mary Algebraic lattices 25/07/2022 26/33

<sup>[</sup>HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery problem. ACNS.

#### Notations:

- $ightharpoonup K=\mathbb{Q}[X]/\Phi_N(X)$  with  $\Phi_N$  cyclotomic polynomial
  - $lackbox{} \Phi_N(\alpha) = 0$  if and only if  $\alpha$  is a primitive N-th root of unity
- $ightharpoonup q = 1 \mod N$  prime
  - lacksquare so that there exists a primitive N-th root of unity in  $\mathbb{F}_q$

Alice Pellet-Mary Algebraic lattices 25/07/2022 26 / 33

<sup>[</sup>HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery problem. ACNS.

#### Notations:

- $ightharpoonup K=\mathbb{Q}[X]/\Phi_N(X)$  with  $\Phi_N$  cyclotomic polynomial
  - $lackbox{} \Phi_N(\alpha) = 0$  if and only if  $\alpha$  is a primitive N-th root of unity
- $ightharpoonup q=1 \bmod N$  prime
  - lacksquare so that there exists a primitive N-th root of unity in  $\mathbb{F}_q$
- $S_t \subset \{\omega, \text{ roots of } \Phi_N \text{ in } \mathbb{F}_q\} \text{ with size } |S_t| = t \quad (1 \leq t \leq \varphi(N))$

Alice Pellet-Mary Algebraic lattices 25/07/2022 26 / 33

<sup>[</sup>HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery problem. ACNS.

#### Notations:

- $ightharpoonup K=\mathbb{Q}[X]/\Phi_N(X)$  with  $\Phi_N$  cyclotomic polynomial
  - $lackbox{ }\Phi_N(lpha)=0$  if and only if lpha is a primitive N-th root of unity
- $ightharpoonup q=1 \bmod N$  prime
  - lacksquare so that there exists a primitive N-th root of unity in  $\mathbb{F}_q$
- ▶  $S_t \subset \{\omega, \text{ roots of } \Phi_N \text{ in } \mathbb{F}_q\} \text{ with size } |S_t| = t \quad (1 \leq t \leq \varphi(N))$

## Partial Vandermonde Knapsack (PV-Knap) [HPS+14]

Parameters: q,  $S_t$  and B > 1

Objective: recover f from  $(f(\omega) \mod q)_{\omega \in S_t}$ , where

•  $f = f(X) \in \mathcal{O}_K$  is sampled randomly such that  $\|\sigma(f)\| \leq B$ 

(The original article worked in  $\mathbb{Q}[X]/(X^N-1)$  and with  $\Sigma$ )

Alice Pellet-Mary Algebraic lattices 25/07/2022 26 / 33

<sup>[</sup>HPS+14] Hoffstein, Pipher, Schanck, Silverman, and Whyte. Practical signatures from the partial Fourier recovery problem. ACNS.

# PV-Knap is an (ideal) lattice problem

### PV-Knap

Objective: recover f from  $(f(\omega) \mod q)_{\omega \in S_t}$ , where

•  $f = f(X) \in \mathcal{O}_K$  is sampled randomly such that  $\|\sigma(f)\| \leq B$ 

#### A few observations:

lacktriangleright easy to recover a large  $ilde{f}$  such that  $ilde{f}(\omega)=f(\omega) mod q$ ,  $orall \omega \in S_t$  ightharpoonup polynomial interpolation in  $\mathbb{F}_q$ 

# PV-Knap is an (ideal) lattice problem

### PV-Knap

Objective: recover f from  $(f(\omega) \mod q)_{\omega \in S_t}$ , where

•  $f = f(X) \in \mathcal{O}_K$  is sampled randomly such that  $\|\sigma(f)\| \leq B$ 

#### A few observations:

- lacktriangleright easy to recover a large  $ilde{f}$  such that  $ilde{f}(\omega)=f(\omega) mod q$ ,  $orall \omega \in S_t$  ightharpoonup polynomial interpolation in  $\mathbb{F}_q$
- ightharpoonup Recovering small f from large  $ilde{f}$  is a BDD in

$$\Lambda = \sigma\Big(\big\{g \in \mathcal{O}_{K} \,|\, g(\omega) = 0 \bmod q, \, \forall \omega \in S_{t}\big\}\Big)$$

(if parameters are well chosen)

# PV-Knap is an (ideal) lattice problem

### PV-Knap

Objective: recover f from  $(f(\omega) \mod q)_{\omega \in S_t}$ , where

•  $f = f(X) \in \mathcal{O}_K$  is sampled randomly such that  $\|\sigma(f)\| \leq B$ 

#### A few observations:

- lacktriangleright easy to recover a large  $ilde{f}$  such that  $ilde{f}(\omega)=f(\omega) mod q$ ,  $orall \omega \in S_t$  ightsquigarrow polynomial interpolation in  $\mathbb{F}_q$
- ightharpoonup Recovering small f from large  $ilde{f}$  is a BDD in

$$\Lambda = \sigma\Big(\big\{g \in \mathcal{O}_K \,|\, g(\omega) = 0 \,\, \mathsf{mod}\,\, q, \, \forall \omega \in \mathcal{S}_t\big\}\Big)$$

(if parameters are well chosen)

▶ ∧ is an ideal lattice [BSS22]

[BSS22] Boudgoust, Sakzad, and Steinfeld. Vandermonde meets Regev: Public Key Encryption Schemes Based on Partial Vandermonde Problems. DCC.

## Hardness of PV-Knap



## Hardness of PV-Knap



### Warning:

- ▶ The reduction produces specific ideals (they divide  $\langle q \rangle$ )
  - ▶ PV-Knap might be easier than id-SVP

## Hardness of PV-Knap



### Warning:

- ► The reduction produces specific ideals (they divide  $\langle q \rangle$ )
  - ▶ PV-Knap might be easier than id-SVP
- lacksquare if  $S_t$  is badly chosen, id-SVP can be solved in poly time [BGP22]
  - ightharpoonup attacks on PV-Knap for bad choices of  $S_t$

Alice Pellet-Mary Algebraic lattices 25/07/2022 28/33

<sup>[</sup>BGP22] Boudgoust, Gachon, and Pellet-Mary. Some Easy Instances of Ideal-SVP and Implications on the Partial Vandermonde Knapsack Problem. Crypto.

### Outline of the talk

- A bit of number theory
- Algebraic lattices
- 3 Algorithmic problems for cryptography
- 4 Some more number theory

Log: 
$$K \to \mathbb{R}^d$$
  
 $y \mapsto (\log |y(\alpha_1)|, \dots, \log |y(\alpha_d)|)$ 

Log: 
$$K \to \mathbb{R}^d$$
  
 $y \mapsto (\log |y(\alpha_1)|, \dots, \log |y(\alpha_d)|)$ 

Let 
$$1=(1,\cdots,1)$$
 and  $H=1^{\perp}$ .

## Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$ , with  $h \in H$ 



$$\mathsf{Log}: \mathsf{K} \to \mathbb{R}^d$$
$$y \mapsto (\mathsf{log}\,|y(\alpha_1)|, \cdots, \mathsf{log}\,|y(\alpha_d)|)$$

Let 
$$1=(1,\cdots,1)$$
 and  $H=1^{\perp}$ .

## Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$ , with  $h \in H$ 

- a ≥ 0



$$\mathsf{Log}: \mathsf{K} \to \mathbb{R}^d$$
$$y \mapsto (\mathsf{log}\,|y(\alpha_1)|, \cdots, \mathsf{log}\,|y(\alpha_d)|)$$

Let 
$$1=(1,\cdots,1)$$
 and  $H=1^{\perp}$ .

## Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$ , with  $h \in H$ 

- a ≥ 0
- $\rightarrow$  a=0 iff r is a unit



Log: 
$$K \to \mathbb{R}^d$$
  
 $y \mapsto (\log |y(\alpha_1)|, \dots, \log |y(\alpha_d)|)$ 

Let 
$$1=(1,\cdots,1)$$
 and  $H=1^{\perp}$  .

## Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$ , with  $h \in H$ 

- $\rightarrow$   $a \ge 0$
- $\rightarrow$  a=0 iff r is a unit



30 / 33

The Log-unit lattice:  $\Lambda := \text{Log}(O_{\kappa}^{\times})$  is a lattice in H.

$$\mathsf{Log}: \mathsf{K} \to \mathbb{R}^d$$
$$y \mapsto (\log|y(\alpha_1)|, \cdots, \log|y(\alpha_d)|)$$

Let 
$$1=(1,\cdots,1)$$
 and  $H=1^{\perp}$ .

## Properties $(r \in O_K)$

 $\text{Log } r = h + a \cdot 1$ , with  $h \in H$ 

- $\rightarrow$   $a \ge 0$
- $\rightarrow$  a=0 iff r is a unit
- $||r|| \simeq \exp(\|\log r\|_{\infty})$



30 / 33

The Log-unit lattice:  $\Lambda := \text{Log}(O_{\kappa}^{\times})$  is a lattice in H.



## Meaning:

ightharpoonup K contains L, which contains  $\mathbb Q$ 



### Meaning:

- ightharpoonup K contains L, which contains  $\mathbb Q$
- K is a L-vector space of degree  $[K:L]=n_1$
- lacksquare L is a  $\mathbb{Q}$ -vector space of degree  $[L:\mathbb{Q}]=n_2$



### Meaning:

- ightharpoonup K contains L, which contains  $\mathbb Q$
- ightharpoonup K is a L-vector space of degree  $[K:L]=n_1$
- ▶ *L* is a  $\mathbb{Q}$ -vector space of degree  $[L:\mathbb{Q}] = n_2$ ⇒ *K* is a  $\mathbb{Q}$ -vector space of degree  $n_1 \cdot n_2$



### Meaning:

- ightharpoonup K contains L, which contains  $\mathbb Q$
- ightharpoonup K is a L-vector space of degree  $[K:L]=n_1$
- ▶ *L* is a  $\mathbb{Q}$ -vector space of degree  $[L:\mathbb{Q}] = n_2$ ⇒ *K* is a  $\mathbb{Q}$ -vector space of degree  $n_1 \cdot n_2$

Example: 
$$\mathbb{Q}[X]/(X^4+1)$$

$$\mathbb{Q}[X]/(X^2+1)$$

$$\mathbb{Q}[X]/(X^2+1)$$

# Automorphisms and subfields

In this slide 
$$K=\mathbb{Q}[X]/(X^d+1)$$
 (or any Galois field)

Automorphisms:  $\exists \sigma_1, \cdots, \sigma_d$  automorphisms of K

# Automorphisms and subfields

In this slide 
$$K = \mathbb{Q}[X]/(X^d+1)$$
 (or any Galois field)

Automorphisms:  $\exists \sigma_1, \cdots, \sigma_d$  automorphisms of K

### Properties:

- if  $f \in \mathcal{O}_K$  then  $\sigma_i(f) \in \mathcal{O}_K$
- $||\sigma(f)|| = ||\sigma(\sigma_i(f))||, \text{ for all } f \in K$

# Automorphisms and subfields

In this slide 
$$K = \mathbb{Q}[X]/(X^d+1)$$
 (or any Galois field)

Automorphisms:  $\exists \sigma_1, \cdots, \sigma_d$  automorphisms of K

### Properties:

- if  $f \in \mathcal{O}_K$  then  $\sigma_i(f) \in \mathcal{O}_K$
- $||\sigma(f)|| = ||\sigma(\sigma_i(f))||, \text{ for all } f \in K$

Subfields: If L subfield of K, there exist  $S_L \subseteq \{1, \dots, d\}$  s.t.

- $|S_L| = [K:L] 1$
- for all  $f \in K$ ,

$$\mathcal{N}_{K/L}(f) := f \cdot \prod_{i \in S_L} \sigma_i(f) \in L$$

### Ideals vs modules of rank $\geq 2$ :

 $\blacktriangleright$  there seem to be a gap in hardness between id-SVP and mod-SIVP  $_{\geq 2}$ 

#### Ideals vs modules of rank $\geq 2$ :

 $\blacktriangleright$  there seem to be a gap in hardness between id-SVP and mod-SIVP  $_{\geq 2}$ 

### Crypto problems:

- lacktriangleright most problems used in crypto are module problems of rank  $\geq 2$ 
  - ▶ RLWE and mod-LWE  $\approx$  mod-SIVP<sub>2</sub>
  - ▶  $id-SVP \le NTRU \le mod-SIVP_2$  (where exactly?)

#### Ideals vs modules of rank $\geq 2$ :

 $\blacktriangleright$  there seem to be a gap in hardness between id-SVP and mod-SIVP  $_{\geq 2}$ 

### Crypto problems:

- lacktriangleright most problems used in crypto are module problems of rank  $\geq 2$ 
  - ▶ RLWE and mod-LWE  $\approx$  mod-SIVP<sub>2</sub>
  - ▶  $id-SVP \le NTRU \le mod-SIVP_2$  (where exactly?)
- but some problems are ideal problems
  - ightharpoonup PV-Knap  $\leq$  id-SVP

#### Ideals vs modules of rank $\geq 2$ :

 $\blacktriangleright$  there seem to be a gap in hardness between id-SVP and mod-SIVP  $_{\geq 2}$ 

### Crypto problems:

- lacktriangleright most problems used in crypto are module problems of rank  $\geq 2$ 
  - ▶ RLWE and mod-LWE  $\approx$  mod-SIVP<sub>2</sub>
  - ▶  $id-SVP \le NTRU \le mod-SIVP_2$  (where exactly?)
- but some problems are ideal problems
  - ▶ PV-Knap  $\leq$  id-SVP

Next talk: attacks that exploit the algebraic structure

#### Ideals vs modules of rank $\geq 2$ :

 $\blacktriangleright$  there seem to be a gap in hardness between id-SVP and mod-SIVP  $_{\geq 2}$ 

### Crypto problems:

- lacktriangle most problems used in crypto are module problems of rank  $\geq 2$ 
  - ▶ RLWE and mod-LWE  $\approx$  mod-SIVP<sub>2</sub>
  - ▶  $id-SVP \le NTRU \le mod-SIVP_2$  (where exactly?)
- but some problems are ideal problems
  - ▶ PV-Knap  $\leq$  id-SVP

Next talk: attacks that exploit the algebraic structure

Thank you