On the hardness of the NTRU problem

Alice Pellet-Mary ${ }^{1}$ and Damien Stehlé ${ }^{2}$
${ }^{1}$ CNRS and Université de Bordeaux, ${ }^{2}$ ENS de Lyon
Asiacrypt 2021
https://eprint.iacr.org/2021/821.pdf
Cnrs

> Université deBORDEAUX

ENS DE LYON

Context: NTRU

NTRU
 (N -th degree truncated polynomial ring units)

- algorithmic problem based on lattices
- post-quantum
- efficient
- used in Falcon, NTRU and NTRUPrime
(round 3 in the NIST post quantum standardization process)
- old (for lattice-based crypto): introduced in 1996

Context: Ring / Module LWE

Ring LWE and Module LWE
 (Ring / Module Learning With Errors)

- algorithmic problem based on lattices
- post-quantum
- efficient
- used in Dilithium, Saber and Kyber
(round 3 in the NIST post quantum standardization process)
- more recent: introduced in 2009
[SSTX09] Stehlé, Steinfeld, Tanaka, and Xagawa. Efficient public key encryption based on ideal lattices. Asiacrypt. [LPR10] Lyubashevsky, Peikert, and Regev. On ideal lattices and learning with errors over rings. Eurocrypt. [LS15] Langlois and Stehlé. Worst-case to average-case reductions for module lattices. Design Codes Cryptography.

NTRU vs Ring LWE

- both are efficient
- both are versatile (but Ring LWE a bit more)
- NTRU is older

NTRU vs Ring LWE

- both are efficient
- both are versatile (but Ring LWE a bit more)
- NTRU is older
- Ring LWE has stronger theoretical security guarantees (reductions)

[Pei16] Peikert. A decade of lattice cryptography. Foundations and Trends in TCS.

Our result

Our result

\trianglethe reductions only work for certain distributions of NTRU instances (the arrows may not compose)

Focus of this talk

Defining NTRU problems

Notations

If you like polynomial rings

- $R=\mathbb{Z}[X] /\left(X^{n}+1\right) \quad\left(n=2^{k}\right)$
> $K=\mathbb{Q}[X] /\left(X^{n}+1\right)$
- $q \in \mathbb{Z}, q \geq 2$
- $R_{q}=(\mathbb{Z} / q \mathbb{Z})[X] /\left(X^{n}+1\right)$
$\nabla\|a\|=\sqrt{\sum_{i} a_{i}^{2}} \quad\left(a=\sum_{i=0}^{n-1} a_{i} X^{i} \in R\right)$
(K can be any other number field)

If you don't

- $R=\mathbb{Z}$
- $K=\mathbb{Q}$
- $q \in \mathbb{Z}, q \geq 2$
- $R_{q}=\mathbb{Z} / q \mathbb{Z}$
- $\|a\|=|a| \quad(a \in R)$

NTRU instances

NTRU instance

A γ-NTRU instance is $h \in R_{q}$ s.t.
> $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
$>\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma}$
The pair (f, g) is a trapdoor for h.

NTRU instances

NTRU instance

A γ-NTRU instance is $h \in R_{q}$ s.t.
> $h=f / g \bmod q \quad($ or $g h=f \bmod q)$
$>\|f\|,\|g\| \leq \frac{\sqrt{q}}{\gamma}$
The pair (f, g) is a trapdoor for h.

Claim: if (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are two trapdoors for the same h,

$$
\frac{f^{\prime}}{g^{\prime}}=\frac{f}{g}=: h_{K} \in K \quad \text { (division performed in } K \text {) }
$$

Decisional NTRU problem

decision NTRU

The γ-decisional NTRU problem asks, given $h \in R_{q}$, to decide whether
$\downarrow h \leftarrow \mathcal{D}$ where \mathcal{D} is a distribution over γ-NTRU instances
$\triangleright h \leftarrow \mathcal{U}\left(R_{q}\right)$

Search NTRU problem (1)

Search NTRU (1)

The γ-search NTRU (1) problem asks, given a γ-NTRU instance h, to recover h_{K}.
(Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))

Search NTRU problem (1)

Search NTRU (1)

The γ-search NTRU (1) problem asks, given a γ-NTRU instance h, to recover h_{K}.
(Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))
\Leftrightarrow recover $(\alpha f, \alpha g)$ for any $\alpha \in K$

Search NTRU problem (1)

Search NTRU (1)

The γ-search NTRU (1) problem asks, given a γ-NTRU instance h, to recover h_{K}.
(Recall $h_{K}=f / g \in K$ for any trapdoor (f, g))
\Leftrightarrow recover $(\alpha f, \alpha g)$ for any $\alpha \in K$

Note: for the rest of the talk, "search NTRU" = " search NTRU (1)"

Techniques of the reduction

Reducing search NTRU to decision NTRU (1/2)

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K$ (division in K)
Can use an oracle for decision NTRU:
given $h \in R_{q}$, the oracle outputs
> YES if $h=f / g \bmod q$, with f, g small $(\leq B)$
> NO otherwise
(we assume for now that the oracle is perfect)

Reducing search NTRU to decision NTRU (1/2)

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K$ (division in K)
Can use an oracle for decision NTRU:
given $h \in R_{q}$, the oracle outputs
> YES if $h=f / g \bmod q$, with f, g small $(\leq B)$
> NO otherwise
(we assume for now that the oracle is perfect)
Idea:
∇ take $x, y \in R$

- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not

Reducing search NTRU to decision NTRU (1/2)

Objective: given $h=f / g \bmod q$, recover $h_{K}=f / g \in K$ (division in K)
Can use an oracle for decision NTRU:
given $h \in R_{q}$, the oracle outputs
> YES if $h=f / g \bmod q$, with f, g small $(\leq B)$

- NO otherwise
(we assume for now that the oracle is perfect)
Idea:
$>$ take $x, y \in R$
- create $h^{\prime}=x \cdot h+y=\frac{x f+y g}{g} \bmod q$
- query the oracle on h^{\prime}
- learn whether $x f+y g$ is small or not
\Rightarrow we can choose x and y
\Rightarrow we can modify the coordinates one by one

Reducing search NTRU to decision NTRU (2/2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Reducing search NTRU to decision NTRU (2/2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)

Reducing search NTRU to decision NTRU (2/2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)
Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0} g=B$
(Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says no)

Reducing search NTRU to decision NTRU (2/2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)
Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0} g=B$
(Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says no)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B$

Reducing search NTRU to decision NTRU (2/2)

Simplified problem

$f, g \in \mathbb{R}$ secret, $B \geq 0$ unknown.
Given any $x, y \in \mathbb{R}$, we can learn whether $|x f+y g| \geq B$ or not. Objective: recover f / g

Remark: we can only learn f / g (not f and g)
(multiply f, g, B by the same $\alpha \rightsquigarrow$ oracle has the same behavior)
Algorithm:

- Find x_{0}, y_{0} such that $x_{0} f+y_{0} g=B$
(Fix $x_{0} \ll B /|f|$ and increase y_{0} until the oracle says no)
- Find x_{1}, y_{1} such that $x_{1} \neq x_{0}$ and $x_{1} f+y_{1} g=B$
- Solve for f / g

Handling imperfect oracles

If the oracle is not perfect:
We use the "oracle hidden center" framework [PRS17]

Handling imperfect oracles

If the oracle is not perfect:
We use the "oracle hidden center" framework [PRS17]

- we continuously transform \mathcal{D} into $\mathcal{U}\left(R_{q}\right)$
(recall that \mathcal{D} is a distribution over NTRU instances)
- need to prove that the continuous transformation behaves nicely (lipschitz,...)
- then call [PRS17]
[PRS17] Peikert, Regev, and Stephens-Davidowitz. Pseudorandomness of ring-LWE for any ring and modulus. STOC.

Conclusion

More related works

Security guarantees:
[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- decision NTRU is statistically hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$
[SS11] Stehlé and Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. Eurocrypt. [WW18] Wang and Wang. Provably secure NTRUEncrypt over any cyclotomic field. SAC.

More related works

Security guarantees:
[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- decision NTRU is statistically hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$

Attacks: (polynomial time)
[LLL82] decision/search(1) NTRU are broken if $\gamma \geq 2^{n}$
[LLL82] Lenstra, Lenstra, Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

More related works

Security guarantees:

[SS11, WW18] If $f, g \leftarrow D_{R, \sigma}$ with $\sigma \geq \operatorname{poly}(n) \cdot \sqrt{q}$ then $f / g \approx \mathcal{U}\left(R_{q}\right)$ (cyclotomic fields)

- decision NTRU is statistically hard when $\gamma \leq \frac{1}{\operatorname{poly}(n)}$

Attacks: (polynomial time)
[LLL82] decision/search(1) NTRU are broken if $\gamma \geq 2^{n}$
[ABD16, CJL16] decision/search(1) NTRU are broken
[KF17]

$$
\begin{aligned}
& \text { if }(\log q)^{2} \geq n \cdot \log \frac{\sqrt{q}}{\gamma} \\
& \left(\text { e.g., } q \approx 2^{\sqrt{n}} \text { and } \gamma=\sqrt{q} / \operatorname{poly}(n)\right)
\end{aligned}
$$

[^0]
Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we prove hardness of decision NTRU from worst case lattice problems?
- Can we prove a reduction from module problems with rank ≥ 2 ?

Conclusion and open problems

- Can we make the distributions of the reductions match?
- Can we prove hardness of decision NTRU from worst case lattice problems?
- Can we prove a reduction from module problems with rank ≥ 2 ?

Thank you

[^0]: [ABD16] Albrecht, Bai, and Ducas. A subfield lattice attack on overstretched NTRU assumptions. Crypto. [CJL16] Cheon, Jeong, and Lee. An algorithm for NTRU problems. LMS J Comput Math.
 [KF17] Kirchner and Fouque. Revisiting lattice attacks on overstretched NTRU parameters. Eurocrypt

