On the Statistical Leak of the GGH13 Multilinear Map and some Variants

Léo Ducas¹, Alice Pellet-Mary²

¹Cryptology Group, CWI, Amsterdam

²LIP, ENS de Lyon

Asiacrypt 2018

European Research Council Established by the European Commission

A. Pellet-Mary

Statistical Leak of GGH13 map

Objective: Analyse the statistical leak of the GGH13 multilinear map

GGH13: Garg, Gentry and Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

A. Pellet-Mary

Objective: Analyse the statistical leak of the GGH13 multilinear map

• Description of a simple setting using the GGH13 map

GGH13: Garg, Gentry and Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

Objective: Analyse the statistical leak of the GGH13 multilinear map

- Description of a simple setting using the GGH13 map
- Analyse of the statistical leak in this simple setting
 - ► For 4 different variants of the GGH13 map

GGH13: Garg, Gentry and Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

Objective: Analyse the statistical leak of the GGH13 multilinear map

- Description of a simple setting using the GGH13 map
- Analyse of the statistical leak in this simple setting
 - For 4 different variants of the GGH13 map
- Proposition of a countermeasure

GGH13: Garg, Gentry and Halevi. Candidate multilinear maps from ideal lattices, Eurocrypt.

Cryptographic multilinear map

Definition: κ asymmetric multilinear map

Different levels of encodings, corresponding to subsets of $\{1, \ldots, \kappa\}$. Denote by Enc(a, S) a level-S encoding of the message a, for $S \subseteq \{1, \ldots, \kappa\} =: [\kappa]$.

Cryptographic multilinear map

Definition: κ asymmetric multilinear map

Different levels of encodings, corresponding to subsets of $\{1, \ldots, \kappa\}$. Denote by Enc(a, S) a level-S encoding of the message a, for $S \subseteq \{1, \ldots, \kappa\} =: [\kappa]$.

Functionality:

Addition: Add($Enc(a_1, S)$, $Enc(a_2, S)$) = $Enc(a_1 + a_2, S)$

Multiplication: Mult(Enc(a_1, S_1), Enc(a_2, S_2)) = Enc($a_1 \cdot a_2, S_1 \cup S_2$) if $S_1 \cap S_2 = \emptyset$

Zero-test: Zero-test($Enc(a, [\kappa])$) = True iff a = 0

Security: multiple security definitions

Mmap: applications and candidates

Applications:

- One-round key-exchange between $\kappa + 1$ users (generalization of pairings)
- Attribute based encryption, witness encryption, ...
- Indistinguishability obfuscation (iO)

Mmap: applications and candidates

Applications:

- One-round key-exchange between $\kappa + 1$ users (generalization of pairings)
- Attribute based encryption, witness encryption, ...
- Indistinguishability obfuscation (iO)

Three main candidates

GGH13, CLT13, GGH15

GGH13: Garg, Gentry and Halevi (Eurocrypt 2013) CLT13: Coron, Lepoint, Tibouchi (Crypto 2013) GGH15: Gentry, Gorbunov, Halevi (TCC 2015)

A. Pellet-Mary

Statistical Leak of GGH13 map

Zeroizing attacks

Theorem [Hu and Jia, Eurocrypt'16] The GGH13 map is insecure if encodings of zero are provided.

Zeroizing attacks

Theorem [Hu and Jia, Eurocrypt'16] The GGH13 map is insecure if encodings of zero are provided.

• GGH13 is insecure for almost all applications, **except** obfuscation.

Zeroizing attacks

Theorem [Hu and Jia, Eurocrypt'16] The GGH13 map is insecure if encodings of zero are provided.

- GGH13 is insecure for almost all applications, **except** obfuscation.
- Zeroizing attack on some candidate obfuscators:
 - Miles, Sahai, Zhandry, Crypto'16
 - Chen, Gentry, Halevi, EC'17

Zeroizing attacks

Theorem [Hu and Jia, Eurocrypt'16] The GGH13 map is insecure if encodings of zero are provided.

- GGH13 is insecure for almost all applications, **except** obfuscation.
- Zeroizing attack on some candidate obfuscators:
 - Miles, Sahai, Zhandry, Crypto'16
 - Chen, Gentry, Halevi, EC'17

Statistical attacks

Zeroizing attacks

Theorem [Hu and Jia, Eurocrypt'16] The GGH13 map is insecure if encodings of zero are provided.

- GGH13 is insecure for almost all applications, **except** obfuscation.
- Zeroizing attack on some candidate obfuscators:
 - Miles, Sahai, Zhandry, Crypto'16
 - Chen, Gentry, Halevi, EC'17

Statistical attacks

- mentioned in [GGH13]
 - 2 sampling methods proposed

In the GGH13 map:

- Encodings are randomized **but** modulo q
 - analogous to NTRU
 - expectation and variance reveal nothing

In the GGH13 map:

- Encodings are randomized but modulo q
 - analogous to NTRU
 - expectation and variance reveal nothing
- After zero-test: obtain an element in \mathbb{Z} (no reduction mod q)
 - function of the encodings

In the GGH13 map:

- Encodings are randomized but modulo q
 - analogous to NTRU
 - expectation and variance reveal nothing
- After zero-test: obtain an element in $\mathbb Z$ (no reduction mod q)
 - function of the encodings
 - hence randomized
 - its variance might reveal secret information

In the GGH13 map:

- Encodings are randomized **but** modulo q
 - analogous to NTRU
 - expectation and variance reveal nothing
- After zero-test: obtain an element in $\mathbb Z$ (no reduction modq)
 - function of the encodings
 - hence randomized
 - its variance might reveal secret information

In this talk

The leak we analyse is the variance of the post-zero-tested elements

What setting of the GGH13 map should we consider?

What setting of the GGH13 map should we consider?

We define our own setting

What setting of the GGH13 map should we consider?

We define our own setting

• inspired by iO

What setting of the GGH13 map should we consider?

We define our own setting

- inspired by iO
- but simpler

What setting of the GGH13 map should we consider?

We define our own setting

- inspired by iO
- but simpler
- secure in the weak multilinear map model
 - no "simple" zeroizing attacks

- We consider 4 different sampling procedures for the encodings:
 - 2 from [GGH13]
 - ▶ 2 from [DGG+18]

[DGG⁺18] Döttling, Garg, Gupta, Miao, and Mukherjee. Obfuscation from Low Noise Multilinear Maps, Indocrypt.

A. Pellet-Mary

- We consider 4 different sampling procedures for the encodings:
 - 2 from [GGH13]
 - ▶ 2 from [DGG+18]

Sampling method	leakage related	full attack?
	to secret elements	
Simplistic [GGH13]	yes	yes for some params
Exponential [GGH13]	yes	no
Conservative [DGG ⁺ 18]	yes	no
Aggressive [DGG ⁺ 18]	yes	no

[[]DGG⁺18] Döttling, Garg, Gupta, Miao, and Mukherjee. Obfuscation from Low Noise Multilinear Maps, Indocrypt.

- We consider 4 different sampling procedures for the encodings:
 - 2 from [GGH13]
 - 2 from [DGG+18]

Sampling method	leakage related	full attack?
	to secret elements	
Simplistic [GGH13]	yes	yes for some params
Exponential [GGH13]	yes	no
Conservative [DGG ⁺ 18]	yes	no
Aggressive [DGG ⁺ 18]	yes	no
Compensation (this work)	no	no

- We propose a countermeasure \Rightarrow Compensation method
 - In this simple setting
 - Almost as efficient as the simplistic method

[[]DGG⁺18] Döttling, Garg, Gupta, Miao, and Mukherjee. Obfuscation from Low Noise Multilinear Maps, Indocrypt.

Outline of the talk

2 Statistical Leak

A. Pellet-Mary

Statistical Leak of GGH13 map

Asiacrypt 2018 9 / 22

The GGH13 multilinear map

• Define
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 with $n = 2^k$

The GGH13 multilinear map

• Define
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 with $n = 2^k$

• Sample g a "small" element in R \Rightarrow the plaintext space is $\mathcal{P} = R/\langle g \rangle$

The GGH13 multilinear map

• Define
$$R = \mathbb{Z}[X]/(X^n + 1)$$
 with $n = 2^k$

- Sample g a "small" element in R \Rightarrow the plaintext space is $\mathcal{P} = R/\langle g \rangle$
- Sample q a "large" integer
 ⇒ the encoding space is R_q = R/(qR) = Z_q[X]/(Xⁿ + 1)

Notation

We write $[r]_q$ for the elements in R_q

The GGH13 multilinear map: encodings

- Sample z_1, \ldots, z_κ uniformly in R_q
- Encoding: An encoding of a at level $S \subseteq \{1, \ldots, \kappa\}$ is

$$u = \left[\frac{\widetilde{a}}{\prod_{i \in S} z_i}\right]_q$$

where $\widetilde{a} = a \mod g$

The GGH13 multilinear map: encodings

- Sample z_1, \ldots, z_κ uniformly in R_q
- Encoding: An encoding of a at level $S \subseteq \{1,\ldots,\kappa\}$ is

$$u = \left[\frac{\widetilde{a}}{\prod_{i \in S} z_i}\right]_{c}$$

where
$$\widetilde{a} = a \mod g$$

Addition and multiplication

Addition:

$$\left[\frac{a_1+r_1g}{\prod_{i\in S} z_i}\right]_q + \left[\frac{a_2+r_2g}{\prod_{i\in S} z_i}\right]_q = \left[\frac{a_1+a_2+r'g}{\prod_{i\in S} z_i}\right]_q$$

Multiplication:

$$\left[\frac{a_1+r_1g}{\prod_{i\in S_1} z_i}\right]_q \cdot \left[\frac{a_2+r_2g}{\prod_{i\in S_2} z_i}\right]_q = \left[\frac{a_1\cdot a_2+r'g}{\prod_{i\in S_1\cup S_2} z_i}\right]_q \text{ (if } S_1\cap S_2=\emptyset)$$

The GGH13 multilinear map: zero-test

- Sample *h* in *R* of the order of $q^{1/2}$
- Let $z^* = \prod_{i=1}^{\kappa} z_i$
- Define

$$p_{zt} = [z^* h g^{-1}]_q$$

The GGH13 multilinear map: zero-test

- Sample h in R of the order of $q^{1/2}$
- Let $z^* = \prod_{i=1}^{\kappa} z_i$

Define

$$p_{zt} = [z^* h g^{-1}]_q$$

Zero-test

To test if $u = [c/z^*]_q$ is an encoding of zero (i.e. $c = 0 \mod g$), compute

$$[u \cdot p_{zt}]_q = [chg^{-1}]_q$$

This is small iff c is a small multiple of g.

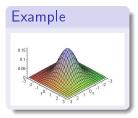
Remark: If $c = 0 \mod g$, then $[u \cdot p_{zt}]_q = ch/g$ over R

Outline of the talk

Statistical background (1)

Definitions

A distribution is said **centered** if its mean is zero. A distribution is said **isotropic** if no direction is privileged.

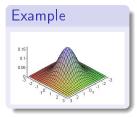


Notation: We write in red the centered isotropic variables

Statistical background (1)

Definitions

A distribution is said **centered** if its mean is zero. A distribution is said **isotropic** if no direction is privileged.



Notation: We write in red the centered isotropic variables

Gaussian distribution

We write $D_{L,\sigma}$ the discrete Gaussian distribution centered in 0 and of variance parameter σ^2 over the lattice L

 $D_{L,\sigma}$ is a centered isotropic distribution

Statistical background (2)

Definitions / Notation

- For $r \in R$, we denote $A(r) = r\overline{r}$ the **auto-correlation** of r, where \overline{r} is the complex conjugate of r when seen in \mathbb{C}
- The variance of a centered variable r is $Var(r) := \mathbb{E}(r\overline{r})$

Statistical background (2)

Definitions / Notation

- For $r \in R$, we denote $A(r) = r\overline{r}$ the **auto-correlation** of r, where \overline{r} is the complex conjugate of r when seen in \mathbb{C}
- The variance of a centered variable r is $Var(r) := \mathbb{E}(r\overline{r})$

Proposition: If *r* is centered and isotropic then

$$\mathbb{E}({m r})={f 0}$$

 ${\sf Var}({m r})=\mu\in\mathbb{R}$

Statistical background (2)

Definitions / Notation

- For $r \in R$, we denote $A(r) = r\overline{r}$ the **auto-correlation** of r, where \overline{r} is the complex conjugate of r when seen in \mathbb{C}
- The variance of a centered variable r is $Var(r) := \mathbb{E}(r\overline{r})$

Proposition: If *r* is centered and isotropic then

$$\mathbb{E}(r)=0$$

 $orall arrow arr$

Statistical leak

Recall

If $u = [c/z^*]_q$ with $c = 0 \mod g$, then

$$[u \cdot p_{zt}]_q = c \cdot h/g \in R$$

Statistical leak

Recall

If $u = [c/z^*]_q$ with $c = 0 \mod g$, then

$$[u \cdot p_{zt}]_q = c \cdot h/g \in R$$

Idea: h/g is fixed but c is a random variable

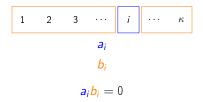
$$\operatorname{Var}(c \cdot h/g) = \operatorname{Var}(c) \cdot A(h/g)$$

We can approximate it with many samples

Simple setting (simplified)

• For all
$$1 \le i \le \kappa$$
, we get
• $[\frac{\tilde{a}_i}{z_i}]_q$ with $\tilde{a}_i = a_i \mod g$
• $[\frac{\tilde{b}_i}{\prod_{j \ne i} z_j}]_q$ with $\tilde{b}_i = b_i \mod g$

• such that $a_i b_i = 0$



Leak in the simple setting

We get encodings of zero:

$$u_i = \left[\frac{\widetilde{a}_i}{z_i}\right]_q \cdot \left[\frac{\widetilde{b}_i}{\prod_{j \neq i} z_j}\right]_q = \left[\frac{\widetilde{a}_i \widetilde{b}_i}{z^*}\right]_q$$

Leak in the simple setting

We get encodings of zero:

$$u_i = \left[\frac{\widetilde{a}_i}{z_i}\right]_q \cdot \left[\frac{\widetilde{b}_i}{\prod_{j \neq i} z_j}\right]_q = \left[\frac{\widetilde{a}_i \widetilde{b}_i}{z^*}\right]_q$$

After zero-test:

$$(\widetilde{a_i}\cdot\widetilde{b_i})\cdot h/g\in R$$

Leak in the simple setting

We get encodings of zero:

$$u_i = \left[\frac{\widetilde{a}_i}{z_i}\right]_q \cdot \left[\frac{\widetilde{b}_i}{\prod_{j \neq i} z_j}\right]_q = \left[\frac{\widetilde{a}_i \widetilde{b}_i}{z^*}\right]_q$$

After zero-test:

$$(\widetilde{a_i}\cdot\widetilde{b_i})\cdot h/g\in R$$

Variance:

$$\operatorname{Var}(\widetilde{a_i} \cdot \widetilde{b_i}) \cdot A(h/g) = \operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

Recall

The leakage is

$$\operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

Recall

The leakage is

$$\operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

The simplistic method:

$$\widetilde{\mathsf{a}}_i \leftarrow D_{\mathsf{a}_i + \mathsf{gR}, \sigma} \ \widetilde{b}_i \leftarrow D_{b_i + \mathsf{gR}, \sigma}$$

Recall

The leakage is

 $Var(\widetilde{a}_i) \cdot Var(\widetilde{b}_i) \cdot A(h/g)$

The simplistic method:

$$\widetilde{\mathbf{a}_i} \leftarrow D_{\mathbf{a}_i + \mathbf{g}R,\sigma} \ \widetilde{\mathbf{b}_i} \leftarrow D_{\mathbf{b}_i + \mathbf{g}R,\sigma}$$

Leakage: A(h/g)

Recall

The leakage is

$$\operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

The simplistic method

$$\widetilde{a_i} \leftarrow D_{a_i+gR,\sigma}$$

 $\widetilde{b_i} \leftarrow D_{b_i+gR,\sigma}$

The exponential method:

$$\begin{split} \widetilde{a_i} &= \widehat{a_i} \cdot z_i \\ \widetilde{b_i} &= \widehat{b_i} \cdot \prod_{j \neq i} z_j \\ \text{for } \widehat{a_i} \leftarrow D_{(a_i + gR)/z_i, \sigma} \\ \widehat{b_i} \leftarrow D_{(b_i + gR)/(\prod_{j \neq i} z_j), \sigma} \end{split}$$

Leakage: A(h/g)

Recall

The leakage is

$$\operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

The simplistic method

$$\widetilde{a_i} \leftarrow D_{a_i+gR,\sigma}$$

 $\widetilde{b_i} \leftarrow D_{b_i+gR,\sigma}$

The exponential method:

$$\begin{split} \widetilde{a}_{i} &= \widehat{a}_{i} \cdot z_{i} \\ \widetilde{b}_{i} &= \widehat{b}_{i} \cdot \prod_{j \neq i} z_{j} \\ \text{for } \widehat{a}_{i} \leftarrow D_{(a_{i} + gR)/z_{i}, \sigma} \\ \widehat{b}_{i} \leftarrow D_{(b_{i} + gR)/(\prod_{j \neq i} z_{j}), \sigma} \end{split}$$

Leakage: A(h/g)

Leakage:

$$egin{aligned} & A(z_i) \cdot A(\prod_{j
eq i} z_j) \cdot A(h/g) \ &= A(z^*h/g) \end{aligned}$$

Countermeasure

Recall

The leakage is

$$\mathsf{Var}(\widetilde{a_i})\cdot\mathsf{Var}(\widetilde{b_i})\cdot\mathsf{A}(h/g)$$

Wanted: $Var(\widetilde{a_i}) \cdot Var(\widetilde{b_i}) \cdot A(h/g) = 1$

Countermeasure

Recall

The leakage is

$$\operatorname{Var}(\widetilde{a_i}) \cdot \operatorname{Var}(\widetilde{b_i}) \cdot A(h/g)$$

Wanted:
$$Var(\widetilde{a_i}) \cdot Var(\widetilde{b_i}) \cdot A(h/g) = 1$$

The compensation method:

$$\begin{split} \widetilde{a_i} &= \widehat{a_i} \cdot \sqrt{g/h} \\ \widetilde{b_i} &= \widehat{b_i} \cdot \sqrt{g/h} \\ \text{for } \widehat{a_i} &\leftarrow D_{(a_i + gR)/\sqrt{g/h}, \sigma} \\ \widehat{b_i} &\leftarrow D_{(b_i + gR)/\sqrt{g/h}, \sigma} \end{split}$$

Countermeasure

Recall

The leakage is

$$\mathsf{Var}(\widetilde{a_i})\cdot\mathsf{Var}(\widetilde{b_i})\cdot\mathsf{A}(h/g)$$

$$\mathsf{W} \mathsf{anted}$$
: $\mathsf{Var}(\widetilde{a_i}) \cdot \mathsf{Var}(\widetilde{b_i}) \cdot \mathsf{A}(h/g) = 1$

The compensation method:

$$\begin{split} \widetilde{a}_{i} &= \widehat{a}_{i} \cdot \sqrt{g/h} \\ \widetilde{b}_{i} &= \widehat{b}_{i} \cdot \sqrt{g/h} \\ \text{for } \widehat{a}_{i} \leftarrow D_{(a_{i}+gR)/\sqrt{g/h}, \sigma} \\ \widehat{b}_{i} \leftarrow D_{(b_{i}+gR)/\sqrt{g/h}, \sigma} \end{split}$$

Leakage:

$$A(\sqrt{g/h}) \cdot A(\sqrt{g/h}) \cdot A(h/g) = 1$$

Remark: more efficient than other methods (except simplistic)

	Simplistic method	Exponential method
Leakage	pprox A(h/g)	$pprox$ A(z^*h/g)

Problem: The leaked values are fractions

	Simplistic method	Exponential method
Leakage	pprox A(h/g)	$pprox A(z^*h/g)$

Problem: The leaked values are fractions

Solution: for the simplistic method

• Zero-test \Rightarrow recover multiple of h: $r \cdot h$

	Simplistic method	Exponential method
Leakage	pprox A(h/g)	$pprox A(z^*h/g)$

Problem: The leaked values are fractions

Solution: for the simplistic method

- Zero-test \Rightarrow recover multiple of h: $r \cdot h$
- Combine it with the leakage to get: pprox A(rg)
 - Integer coefficients

	Simplistic method	Exponential method
Leakage	pprox A(h/g)	$pprox A(z^*h/g)$

Problem: The leaked values are fractions

Solution: for the simplistic method

- Zero-test \Rightarrow recover multiple of h: $r \cdot h$
- Combine it with the leakage to get: pprox A(rg)
 - Integer coefficients
- If q is poly(n)
 - A(rg) is poly(n)
 - it can be recovered exactly with polynomially many samples
 - obtain a multiple of g

	Simplistic method	Exponential method
Leakage	pprox A(h/g)	$pprox A(z^*h/g)$

Problem: The leaked values are fractions

Solution: for the simplistic method

- Zero-test \Rightarrow recover multiple of h: $r \cdot h$
- Combine it with the leakage to get: pprox A(rg)
 - Integer coefficients
- If q is poly(n)
 - A(rg) is poly(n)
 - it can be recovered exactly with polynomially many samples
 - obtain a multiple of g

Remark: does not work for $A(z^*h/g)$

Sampling method	leakage	full attack?
Simplistic [GGH13]	A(h/g)	yes if <i>q</i> is poly
Exponential [GGH13]	$A(z^*h/g)$	no
Conservative [DGG ⁺ 18]	A(h/g)	no
Aggressive [DGG ⁺ 18]	$A(z^*h/g)$	no
Compensation (this work)	1	no

Sampling method	leakage	full attack?
Simplistic [GGH13]	A(h/g)	yes if <i>q</i> is poly
Exponential [GGH13]	$A(z^*h/g)$	no
Conservative [DGG ⁺ 18]	A(h/g)	no
Aggressive [DGG ⁺ 18]	$A(z^*h/g)$	no
Compensation (this work)	1	no

Open problems:

• Make the full attack work for the conservative method?

Sampling method	leakage	full attack?
Simplistic [GGH13]	A(h/g)	yes if <i>q</i> is poly
Exponential [GGH13]	$A(z^*h/g)$	no
Conservative [DGG ⁺ 18]	A(h/g)	no
Aggressive [DGG ⁺ 18]	$A(z^*h/g)$	no
Compensation (this work)	1	no

Open problems:

- Make the full attack work for the conservative method?
- Is the leak $A(z^*h/g)$ critical?

Sampling method	leakage	full attack?
Simplistic [GGH13]	A(h/g)	yes if <i>q</i> is poly
Exponential [GGH13]	$A(z^*h/g)$	no
Conservative [DGG ⁺ 18]	A(h/g)	no
Aggressive [DGG ⁺ 18]	$A(z^*h/g)$	no
Compensation (this work)	1	no

Open problems:

- Make the full attack work for the conservative method?
- Is the leak $A(z^*h/g)$ critical?
- Extend the simple setting
 - Is the compensation method still safe in other settings?

Sampling method	leakage	full attack?
Simplistic [GGH13]	A(h/g)	yes if <i>q</i> is poly
Exponential [GGH13]	$A(z^*h/g)$	no
Conservative [DGG ⁺ 18]	A(h/g)	no
Aggressive [DGG ⁺ 18]	$A(z^*h/g)$	no
Compensation (this work)	1	no

Open problems:

- Make the full attack work for the conservative method?
- Is the leak $A(z^*h/g)$ critical?
- Extend the simple setting
 - Is the compensation method still safe in other settings?

Questions?