Algorithmic problems over lattices - Exercises

The exercises below use SageMath (https://www.sagemath.org/). If you don't have SageMath on your computer, you can use it online at https://cocalc.com/: click on "run CoCalk now", then on the project "welcome to CoCalc!" and then create a new file of type "Sage worksheet".

1 Exercise 1

1. Import the library
```
from sage.modules.free_module_integer import IntegerLattice
```

2. Start with dimension $\operatorname{dim}=10$
3. Generate a random lattice basis B with
```
B = sage.crypto.gen_lattice(n = dim//2, m=dim, q = ZZ(dim**2).next_prime())
```

4. Solve SVP in $\mathcal{L}(B)$ by running
```
IntegerLattice(B).shortest_vector(algorithm="pari")
```

5. Increase the dimension and repeat until it takes >30 seconds

What is the maximum dimension you were able to reach?

2 Exercise 2

Do the same as in exercise 1, but replace the sampling of B by

```
B = random_matrix(zZ,dim)
```

What maximum dimension can you reach now (in less than 30 ")?

3 Exercise 3

The objective of this exercise is to solve the SIS instance with modulus $q=127$, dimensions $m=10, n=5$ and matrix A obtained by running

```
set_random_seed(42)
A = random_matrix(Integers(127),5,10)
```

Important note: in the slides, the vectors are columns vectors (and the matrix A is tall). In SageMath, the vectors are row vectors (so the matrix A is large). This means that in the formalism of SageMath, we want to find a small vector x such that $A x=0 \bmod q($ instead of $x A=0 \bmod q$ as in the slides).

1. Compute a matrix B whose rows generates of the lattice corresponding to the SIS instance (no need to have a basis of the lattice, any generating set is ok for now (it can contain more vectors than a basis)).
Hint: don't forget that all the vectors $(0,0, \cdots, 0, q, 0, \cdots, 0)$ are in this lattice.
2. The function IntegerLattice (B) can be used even if B is a generating set of the lattice and not a basis. Use this to find a short vector x in the lattice associated to the SIS instance.
3. Check that x is indeed a solution of SIS (i.e., it is short and satisfy $A x=0 \bmod q$.
