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Lattices
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I L = {Bx | x ∈ Zn} is a lattice

I B ∈ GLn(R) is a basis

I n is the dimension of L
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Algorithmic problems
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λ1 SVP

• t•

CVPSIVP

SVP SIVP CVP
shortest vector problem shortest independent closest vector problem

vector problem

Supposedly hard to solve when n is large (input: a bad basis of L)

I even with a quantum computer

I even with a small approximation factor (poly(n))
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Hardness of SVP and CVP

Best Time/Approximation trade-o� for SVP, CVP (even quantumly):
BKZ algorithm [Sch87,SE94]

Time
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factor
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2n2n
0.5poly

2n

2n
0.5

poly

BKZ trade-o�s

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum

problems. Mathematical programming.
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Structured lattices

Ma =


a1 −an · · · −a2
a2 a1 · · · −a3
...

. . .
. . .

...
an an−1 . . . a1



basis of a special case of
ideal lattice

Ma11 Ma12 Ma1m

Ma21 Ma22 Ma2m

Mam1 Mam2 Mamm

· · ·

· · ·

· · ·

...
...

...
. . .

n

nm

basis of a special case of
module lattice
of rank m

ideal-SVP = SVP restricted to ideal lattices
module-SVP = SVP restricted to module lattices
⇒ hardness of these restricted problems much less understood than SVP

Alice Pellet-Mary Attacks on ideal lattices 20/09/2021 7 / 24



Structured lattices

Ma =


a1 −an · · · −a2
a2 a1 · · · −a3
...

. . .
. . .

...
an an−1 . . . a1



basis of a special case of
ideal lattice

Ma11 Ma12 Ma1m

Ma21 Ma22 Ma2m

Mam1 Mam2 Mamm

· · ·

· · ·

· · ·

...
...

...
. . .

n

nm

basis of a special case of
module lattice
of rank m

ideal-SVP = SVP restricted to ideal lattices
module-SVP = SVP restricted to module lattices
⇒ hardness of these restricted problems much less understood than SVP

Alice Pellet-Mary Attacks on ideal lattices 20/09/2021 7 / 24



Structured lattices

Ma =


a1 −an · · · −a2
a2 a1 · · · −a3
...

. . .
. . .

...
an an−1 . . . a1



basis of a special case of
ideal lattice

Ma11 Ma12 Ma1m

Ma21 Ma22 Ma2m

Mam1 Mam2 Mamm

· · ·

· · ·

· · ·

...
...

...
. . .

n

nm

basis of a special case of
module lattice
of rank m

ideal-SVP = SVP restricted to ideal lattices
module-SVP = SVP restricted to module lattices
⇒ hardness of these restricted problems much less understood than SVP

Alice Pellet-Mary Attacks on ideal lattices 20/09/2021 7 / 24



Context
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Standard lattice-based problems

LWE

I post-quantum

I equivalent to worst-case SIVP in unstructured lattice

I not super e�cient

RLWE / Module-LWE / NTRU

I post-quantum

I e�cient

I how do they compare to structured lattice problems?
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Reductions

protocols Ring LWE Ideal SVP

protocols Module LWE
Module SIVP
rank ≥ 2

protocols NTRU

[SSTX09,LPR10]

[LS15]

[Pei16]

[AD17]

?

[PS21]

" Arrows may not all compose (di�erent parameters) "
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[SSTX09,LPR10]

[LS15]

[Pei16]

[AD17]

?

[PS21]

" Arrows may not all compose (di�erent parameters) "

[SSTX09] Stehlé, Steinfeld, Tanaka, Xagawa. E�cient public key encryption based on ideal lattices. Asiacrypt.

[SSTX09] Lyubashevsky, Peikert, Regev. On ideal lattices and learning with errors over rings. Eurocrypt.
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Reductions

protocols Ring LWE Ideal SVP

protocols Module LWE
Module SIVP
rank ≥ 2

protocols NTRU

[SSTX09,LPR10]

[LS15]

[Pei16]

[AD17]

?

[PS21]

" Arrows may not all compose (di�erent parameters) "

[PS21] Pellet-Mary, Stehlé. On the hardness of the NTRU problem. Asiacrypt.
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Summing up

breaking ideal-SVP 6⇒ breaking RLWE / module-LWE / NTRU

I as long as the attack does not generalize to rank ≥ 2, we are safe

I belief that there is a gap between rank 1 (ideals) and rank ≥ 2
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State-of-the-art for ideal-SVP
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How easy is ideal-SVP compared to SVP?
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I almost no impact for crypto size params
I no reduction from RLWE to ideal-SVP
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[CDW17] Cramer, Ducas, Wesolowski. Short stickelberger class relations and application to ideal-SVP. Eurocrypt.

[PHS19] Pellet-Mary, Hanrot, Stehlé. Approx-SVP in ideal lattices with pre-processing. Eurocrypt.

[BR20] Bernard, Roux-Langlois. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices. AC.
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Bernstein's claim
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• Bernstein's claim

I This is in the crypto regime
(but still ideal-SVP 6→ RLWE)

" So far, no argument to support this claim
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Concrete impact

When does [CDW17] starts out-performing BKZ?

For reasonable run-time (a few core-days):
I dim & 5 000

For NIST's weakest security requirement:
I dim & 17 000

Dimension of NIST candidates:

I dim ≈ 500 or 1 000
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Techniques
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Math background

Notation

K = Q[X ]/(X n + 1), with n = 2k (or any cyclotomic �eld)

OK = Z[X ]/(X n + 1)

I Units: O×K = {a ∈ OK | ∃b ∈ OK , ab = 1}

I Principal ideals: 〈g〉 = {gr | r ∈ OK}
I g is a generator of 〈g〉
I { generators of 〈g〉 } = {gu | u ∈ O×K }
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Why is 〈g〉 a lattice?

OK is a lattice

OK = Z[X ]/(X n + 1) → Rn

r(X ) =
n−1∑
i=0

riX
i 7→ (r0, r1, . . . , rn−1)

{
〈g〉 ⊆ OK ' Zn

stable by `+' and `−'
⇒ ideal lattice

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

X

1

〈1 + X 〉

OK
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The Log space

Log : OK → Rn (take the log of every coordinate)

Let 1 = (1, · · · , 1) and H = 1⊥.

Properties (r ∈ OK )

Log r = h + a · 1, with h ∈ H

Log(r1 · r2) = Log(r1) + Log(r2)

a ≥ 0

a = 0 i� r is a unit

‖r‖ ' exp(‖ Log r‖∞)

The Log unit lattice

Λ := Log(O×K ) is a lattice in H.
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The basic algorithm [CGS14,CDPR16]

What does Log〈g〉 look like?

I Find a generator g1 of 〈g〉.
I [BS16]: quantum poly time

I Solve CVP in Λ

I Good basis of Λ
(cyclotomic �eld)

⇒ CVP in poly time
⇒ ‖h‖ ≤ Õ(

√
n)

‖ug1‖ ≤ 2Õ(
√
n) · λ1

[CGS14]: Campbell, Groves, and Shepherd. Soliloquy: a cautionary tale.

[CDPR16] Cramer, Ducas, Peikert and Regev. Recovering short generators of principal ideals in cyclotomic rings. EC.
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• Heuristic • Cyclotomic �elds
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More evolved algorithms: using S-units

Idea: replace units by S-units

+ covering radius of Log-S-unit lattice = O(1) (instead of O(
√
n))

I can reach approximation factor poly(n) (instead of 2O(
√

n))

− we don't know a good basis of the Log-S-unit lattice

I need to pre-compute it (time 2O(n))

I even with the best basis possible,
we can only solve CVP with approx O(

√
n) in poly time

⇒ still 2O(
√
n) approx-SVP in poly time
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Attacks on module lattices

Not much:

BKZ algorithm for modules [MS20]
I does not outperform BKZ, but the algo uses only modules

(no unstructured lattices)

Algorithm for SVP in rank-2 modules [LPSW19]
I Needs an oracle solving CVP in a �xed lattice of dimension n2

[MS20] Mukherjee and Stephens-Davidowitz. Lattice reduction for modules, or how to reduce module-SVP to

module-SVP. Crypto.
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ideals lattices [PHS19,BR20]
(with 2O(n) pre-processing)
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y

Missing ingredients to have an impact on crypto:

I Attacks on modules of rank ≥ 2 (not ideals)

I Attacks for small approximation factors

To learn more: Damien Stehlé's invited talk at PQCrypto 20211

Thank you

1https://pqcrypto2021.kr/download/program/3.1_PQC.pdf
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