
LATTICE-BASED CRYPTO – A. PELLET-MARY BUDAPEST SUMMER SCHOOL – AUGUST 2022

TUTORIAL 2

1 Hashing with SIS (??)

The objective of this exercise is to study a construction of a collision resistant hash function based on SIS.

Let F be a family of functions from a set X to a set Y (which we will call “hash functions”, but really they are just
functions) and let DF be a distribution over this set of functions.

Definition: The advantage of a probabilistic polynomial time (p.p.t.) algorithm A against the collision resistance of
the family of hash functions (F,DF ) is defined as

AdvF (A) := Pr
f←DF

(
A(f) = (x, x′) ∈ X2 with f(x) = f(x′) and x 6= x′

)
,

where the probability is taken over the random choice of f and the internal randomness of A.

Recall also the SIS problem, which is as follows.

Definition: Let q,m, n be integers with m ≥ n and B > 0 be some bound. The advantage of a p.p.t. adversary A
against the SISq,n,m,B problem is defined as

AdvSIS(A) := Pr
A←U(Zm×n

q )

(
A(A) = x ∈ Zm with xT ·A = 0 mod q and 0 < ‖x‖ ≤ B

)
,

where the probability is over the random choice of A and the internal randomness of A.

We will consider the following family F of functions, from {0, 1}m to Zn
q . The functions of F are indexed by a

matrix A ∈ Zm×n
q and are defined as

fA : {0, 1}m → Zn
q

x 7→ xT ·A

The distribution DF over F is obtained by sampling A ∈ Zm×n
q uniformly at random and outputting fA.

1. Assume that B ≥
√
m. Show that if there exists an adversary A against the collision resistance of (F,DF ) with

advantage ε > 0, then there exists an adversary B against the SISq,n,m,B problem with advantage ≥ ε. This
proves that (F,DF ) is a family of collision resistant functions, provided that the SIS problem is hard.

2 QR-factorization (??)

The objective of this exercise is to define the QR factorization of a matrix and prove useful properties of this
decomposition, which will be used in exercise 3.

In this exercise, we admit the following result:
Lemma: There exists a polynomial time algorithm that takes as input any matrix B ∈ GLn(R), and outputs two
matrices Q,R ∈ GLn(R) such that

• B = Q ·R;

• Q is orthonormal, i.e., Q−1 = QT ;



• R is upper triangular and has non negative diagonal coefficients.

The pair (Q,R) is called a QR-factorization of the matrix B. We will see below that it is unique. In the rest of this
exercise sheet, it might be useful to remember that an orthonormal matrix Q has the following properties:

• all the rows and columns of the matrix Q have euclidean norm 1;

• the rows (resp. columns) of Q are orthogonal;

• for any vector v it holds that ‖Qv‖ = ‖v‖.

1. Let B ∈ GLn(R). Show that the QR-factorization of B is unique (i.e., show that if B = QR = Q′R′ with Q,Q′

orthonormal and R,R′ upper triangular with positive diagonal coefficients, then Q = Q′ and R = R′) (??)

We say that a basis B of a lattice is size-reduced if its QR-factorization (Q,R) satisfies the following property:
for all j ≥ i, |ri,j | ≤ ri,i (remember that ri,i > 0). In other words, the diagonal coefficients of R are the largest
coefficients of their rows (in absolute value).

2. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Show that there exists an efficiently computable
unimodular matrix U such that B · U is size-reduced and has QR-factorization (Q,R′) with r′i,i = ri,i for
all i. (??)
(You do not have to describe the algorithm very properly, getting the idea is sufficient.)

In the rest of this exercise sheet, we call size reduce the polynomial time algorithm that takes as input a
matrix B and returns a sized-reduced matrix B′ := B · U as in the above question, i.e., with ri,i = r′i,i and
L(B′) = L(B).

3. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Let bj be the column vectors of B. Show that
maxj rj,j ≤ maxj ‖bj‖. If B is size-reduced, show that we also have the inequality maxj ‖bj‖ ≤

√
n ·maxj rj,j

(in other words, the size of the diagonal coefficients of R are a relatively good approximation of the size of the
vectors of B when B is size-reduced). (??)
(Hint 1: observe that bj = Q · rj with rj the j-th column of R)
(Hint 2: remember the property that ‖Qv‖ = ‖v‖ for any vector v)

3 Computing a short basis from a short generating set (??)

The objective of this exercise is to show that given an arbitrary basisB of a latticeL and a set of n linearly independent
(short) vectors S in L, then one can create a new basis B̃ of L with vectors of length not much larger than the ones
of S. In other words, finding short linearly independent vectors in L is sufficient to obtain a short basis of L.
This exercise uses results from exercise 2.

1. Let B be a basis of a lattice L and S ∈ GLn(R) be a set of n linearly independent vectors in L. Make sure you
remember why there exists an integer matrix X such that S = B ·X . Is X unimodular?

2. Let Y be the HNF basis of the lattice L(XT ) and let U be the unimodular matrix such that XT = Y · U . Verify
that B′ = B · UT is a basis of L and that S = B′ · Y T .

3. Let S = QS · RS be the QR factorization of the matrix S and B′ = QB · RB be the one of B′. Show that
QS = QB and that RS = RB · Y T .
(Hint: use the unicity of the QR-factorization that you proved in exercise 2)

Let B̃ = size reduce(B′). Our objective is to show that B̃ is a basis of L(B) which has vectors almost as
short as the ones of S. (You can check from the way we defined it that B̃ can be computed in polynomial time
from B and S).
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4. Let (Q̃, R̃) be the QR-factorization of B̃. Show that maxj r̃j,j ≤ maxj ‖sj‖.
(Hint 1: remember from question 2 in exercise 2 that r̃j,j = (RB)j,j when we use the size-reduction algorithm)
(Hint 2: observe that the triangular matrix Y is integral and has positive diagonal coefficients, hence its diagonal
coefficients are ≥ 1.)

5. Conclude that B̃ is a new basis of L with columns vectors b̃j satisfying maxj ‖b̃j‖ ≤
√
n ·maxj ‖sj‖. In other

words, the vectors of B̃ are almost as short as the linearly independent vectors from S.
(Hint: this question consists mainly in combining what you have seen in this exercise and in exercise 2.)

4 Ideal lattices (??)

LetR be the ring Z[X]/(Xd +1) where d is a power-of-two (so thatXd +1 is irreducible, andK = Q[X]/(Xd +1)
is a field). An ideal in R is a subset I of R such that for all x, y ∈ I , the sum x + y is also in I , and for any x ∈ I
and α ∈ R, the product x · α is in I .

1. Recall that the coefficient embedding

Σ : K → Qd

a =

d−1∑
i=0

aiX
i 7→ (a0, · · · , ad−1)

maps elements of K to vectors in Qd (and elements of R to vectors in Zd). Show that if a ∈ K is non-zero, then
the d vectors Σ(a ·Xi) for i = 0 to d− 1 are linearly independent. (??)
(Hint 1: assume you have a Q-linear relation

∑d−1
i=0 yi · Σ(a ·Xi) = 0 with the yi’s in Q and not all zero and

try to obtain a contradiction.)
(Hint 2: Σ is a Q-morphism and is a bijection between K and Qd. Also, K is a field so all non-zero elements
are invertible.)

Remember that during the lecture, we have seen that a principal ideal is an ideal of rank d once embedded into
Qd via the canonical embedding. The objective of the next question is to show that this is true for all ideals (not
only the principal ideals).

2. Show that for any non-zero ideal I , the set Σ(I) is a lattice of rank d in Rd. (??)

3. Let I be an ideal of R and s ∈ I be a non-zero element of I . Show that one can efficiently construct d
elements si (for 1 ≤ i ≤ d) in I such that the vectors Σ(si) are linearly independent and have euclidean norm
‖Σ(si)‖ = ‖Σ(s)‖. (??)

4. Conclude that in an ideal lattice Σ(I), finding one short vector v ∈ Σ(I) is sufficient to construct a short basis
B of Σ(I) where all vectors bi of B have euclidean norm at most

√
d · ‖v‖.

(Hint: you may want to use the result of question 5 from exercise 3)

Note: in this exercise, we used special properties of the ring R. In more generality, from one short vector
v ∈ Σ(I), one can construct a short basis with vectors of norm at most γK · ‖v‖ for some γK depending on the
number fields K. For most number fields K used in cryptography, this quantity γK is small (and so the intuition
that “one short vector in an ideal is sufficient to have a short basis” is true).
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