TUTORIAL 2

1 Hashing with SIS $(\star\star)$

The objective of this exercise is to study a construction of a collision resistant hash function based on SIS.

Let F be a family of functions from a set X to a set Y (which we will call "hash functions", but really they are just functions) and let D_F be a distribution over this set of functions.

Definition: The advantage of a probabilistic polynomial time (p.p.t.) algorithm \mathcal{A} against the collision resistance of the family of hash functions (F, D_F) is defined as

$$\operatorname{Adv}_F(\mathcal{A}) := \Pr_{f \leftarrow D_F} \left(\mathcal{A}(f) = (x, x') \in X^2 \text{ with } f(x) = f(x') \text{ and } x \neq x' \right),$$

where the probability is taken over the random choice of f and the internal randomness of A.

Recall also the SIS problem, which is as follows.

Definition: Let q, m, n be integers with $m \ge n$ and B > 0 be some bound. The advantage of a p.p.t. adversary A against the $SIS_{q,n,m,B}$ problem is defined as

$$\operatorname{Adv}_{\operatorname{SIS}}(\mathcal{A}) := \Pr_{A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})} \Big(\mathcal{A}(A) = x \in \mathbb{Z}^m \text{ with } x^T \cdot A = 0 \mod q \text{ and } 0 < ||x|| \le B \Big),$$

where the probability is over the random choice of A and the internal randomness of A.

We will consider the following family F of functions, from $\{0,1\}^m$ to \mathbb{Z}_q^n . The functions of F are indexed by a matrix $A \in \mathbb{Z}_q^{m \times n}$ and are defined as

$$f_A : \{0, 1\}^m \to \mathbb{Z}_q^n$$
$$x \mapsto x^T \cdot A$$

The distribution D_F over F is obtained by sampling $A \in \mathbb{Z}_q^{m \times n}$ uniformly at random and outputting f_A .

1. Assume that $B \ge \sqrt{m}$. Show that if there exists an adversary \mathcal{A} against the collision resistance of (F, D_F) with advantage $\varepsilon > 0$, then there exists an adversary \mathcal{B} against the SIS_{q,n,m,B} problem with advantage $\ge \varepsilon$. This proves that (F, D_F) is a family of collision resistant functions, provided that the SIS problem is hard.

2 QR-factorization (******)

The objective of this exercise is to define the QR factorization of a matrix and prove useful properties of this decomposition, which will be used in exercise 3.

In this exercise, we admit the following result:

Lemma: There exists a polynomial time algorithm that takes as input any matrix $B \in GL_n(\mathbb{R})$, and outputs two matrices $Q, R \in GL_n(\mathbb{R})$ such that

- $B = Q \cdot R;$
- Q is orthonormal, i.e., $Q^{-1} = Q^T$;

• R is upper triangular and has non negative diagonal coefficients.

The pair (Q, R) is called a *QR-factorization* of the matrix *B*. We will see below that it is unique. In the rest of this exercise sheet, it might be useful to remember that an orthonormal matrix *Q* has the following properties:

- all the rows and columns of the matrix Q have euclidean norm 1;
- the rows (resp. columns) of Q are orthogonal;
- for any vector v it holds that ||Qv|| = ||v||.
- 1. Let $B \in GL_n(\mathbb{R})$. Show that the QR-factorization of B is unique (i.e., show that if B = QR = Q'R' with Q, Q' orthonormal and R, R' upper triangular with positive diagonal coefficients, then Q = Q' and R = R') (**)

We say that a basis B of a lattice is *size-reduced* if its QR-factorization (Q, R) satisfies the following property: for all $j \ge i$, $|r_{i,j}| \le r_{i,i}$ (remember that $r_{i,i} > 0$). In other words, the diagonal coefficients of R are the largest coefficients of their rows (in absolute value).

2. Let $B \in \operatorname{GL}_n(\mathbb{R})$ and (Q, R) be its QR-factorization. Show that there exists an efficiently computable unimodular matrix U such that $B \cdot U$ is size-reduced and has QR-factorization (Q, R') with $r'_{i,i} = r_{i,i}$ for all i. $(\star\star)$

(You do not have to describe the algorithm very properly, getting the idea is sufficient.)

In the rest of this exercise sheet, we call size_reduce the polynomial time algorithm that takes as input a matrix B and returns a sized-reduced matrix $B' := B \cdot U$ as in the above question, i.e., with $r_{i,i} = r'_{i,i}$ and $\mathcal{L}(B') = \mathcal{L}(B)$.

3. Let $B \in \operatorname{GL}_n(\mathbb{R})$ and (Q, R) be its QR-factorization. Let b_j be the column vectors of B. Show that $\max_j r_{j,j} \leq \max_j ||b_j||$. If B is size-reduced, show that we also have the inequality $\max_j ||b_j|| \leq \sqrt{n} \cdot \max_j r_{j,j}$ (in other words, the size of the diagonal coefficients of R are a relatively good approximation of the size of the vectors of B when B is size-reduced). $(\star \star)$

(*Hint 1: observe that* $b_j = Q \cdot r_j$ with r_j the *j*-th column of *R*) (*Hint 2: remember the property that* ||Qv|| = ||v|| for any vector *v*)

3 Computing a short basis from a short generating set $(\star\star)$

The objective of this exercise is to show that given an arbitrary basis B of a lattice \mathcal{L} and a set of n linearly independent (short) vectors S in \mathcal{L} , then one can create a new basis \tilde{B} of \mathcal{L} with vectors of length not much larger than the ones of S. In other words, finding short linearly independent vectors in \mathcal{L} is sufficient to obtain a short basis of \mathcal{L} . This exercise uses results from exercise 2.

- 1. Let B be a basis of a lattice \mathcal{L} and $S \in GL_n(\mathbb{R})$ be a set of n linearly independent vectors in \mathcal{L} . Make sure you remember why there exists an integer matrix X such that $S = B \cdot X$. Is X unimodular?
- 2. Let Y be the HNF basis of the lattice $\mathcal{L}(X^T)$ and let U be the unimodular matrix such that $X^T = Y \cdot U$. Verify that $B' = B \cdot U^T$ is a basis of \mathcal{L} and that $S = B' \cdot Y^T$.
- 3. Let $S = Q_S \cdot R_S$ be the QR factorization of the matrix S and $B' = Q_B \cdot R_B$ be the one of B'. Show that $Q_S = Q_B$ and that $R_S = R_B \cdot Y^T$. (*Hint: use the unicity of the QR-factorization that you proved in exercise 2*)

Let $\tilde{B} = \text{size_reduce}(B')$. Our objective is to show that \tilde{B} is a basis of $\mathcal{L}(B)$ which has vectors almost as short as the ones of S. (You can check from the way we defined it that \tilde{B} can be computed in polynomial time from B and S).

4. Let (\tilde{Q}, \tilde{R}) be the QR-factorization of \tilde{B} . Show that $\max_j \tilde{r}_{j,j} \leq \max_j ||s_j||$.

(*Hint 1: remember from question 2 in exercise 2 that* $\tilde{r}_{j,j} = (R_B)_{j,j}$ when we use the size-reduction algorithm) (*Hint 2: observe that the triangular matrix Y is integral and has positive diagonal coefficients, hence its diagonal coefficients are* ≥ 1 .)

5. Conclude that \tilde{B} is a new basis of \mathcal{L} with columns vectors \tilde{b}_j satisfying $\max_j \|\tilde{b}_j\| \leq \sqrt{n} \cdot \max_j \|s_j\|$. In other words, the vectors of \tilde{B} are almost as short as the linearly independent vectors from S.

(Hint: this question consists mainly in combining what you have seen in this exercise and in exercise 2.)

4 Ideal lattices (**)

Let R be the ring $\mathbb{Z}[X]/(X^d+1)$ where d is a power-of-two (so that X^d+1 is irreducible, and $K = \mathbb{Q}[X]/(X^d+1)$ is a field). An ideal in R is a subset I of R such that for all $x, y \in I$, the sum x + y is also in I, and for any $x \in I$ and $\alpha \in R$, the product $x \cdot \alpha$ is in I.

1. Recall that the coefficient embedding

$$\Sigma: K \to \mathbb{Q}^d$$
$$a = \sum_{i=0}^{d-1} a_i X^i \mapsto (a_0, \cdots, a_{d-1})$$

maps elements of K to vectors in \mathbb{Q}^d (and elements of R to vectors in \mathbb{Z}^d). Show that if $a \in K$ is non-zero, then the d vectors $\Sigma(a \cdot X^i)$ for i = 0 to d - 1 are linearly independent. (**)

(*Hint 1: assume you have a* \mathbb{Q} *-linear relation* $\sum_{i=0}^{d-1} y_i \cdot \Sigma(a \cdot X^i) = 0$ with the y_i 's in \mathbb{Q} and not all zero and try to obtain a contradiction.)

(*Hint 2:* Σ *is a* \mathbb{Q} *-morphism and is a bijection between* K *and* \mathbb{Q}^d *. Also,* K *is a field so all non-zero elements are invertible.*)

Remember that during the lecture, we have seen that a principal ideal is an ideal of rank d once embedded into \mathbb{Q}^d via the canonical embedding. The objective of the next question is to show that this is true for all ideals (not only the principal ideals).

- 2. Show that for any non-zero ideal I, the set $\Sigma(I)$ is a lattice of rank d in \mathbb{R}^d . $(\star\star)$
- 3. Let *I* be an ideal of *R* and $s \in I$ be a non-zero element of *I*. Show that one can efficiently construct *d* elements s_i (for $1 \le i \le d$) in *I* such that the vectors $\Sigma(s_i)$ are linearly independent and have euclidean norm $\|\Sigma(s_i)\| = \|\Sigma(s)\|$. (**)
- Conclude that in an ideal lattice Σ(I), finding one short vector v ∈ Σ(I) is sufficient to construct a short basis B of Σ(I) where all vectors b_i of B have euclidean norm at most √d · ||v||.
 (*Hint: you may want to use the result of question 5 from exercise 3*)

Note: in this exercise, we used special properties of the ring R. In more generality, from one short vector $v \in \Sigma(I)$, one can construct a short basis with vectors of norm at most $\gamma_K \cdot ||v||$ for some γ_K depending on the number fields K. For most number fields K used in cryptography, this quantity γ_K is small (and so the intuition that "one short vector in an ideal is sufficient to have a short basis" is true).