Tutorial 9: Digital signatures

Exercise 1.

Secure pairing-based signature in the ROM

In this exercise, we assume that we have two cyclic groups *G* and *G*_{*T*} of the same cardinality *q*, and a generator *g* of *G*. We also assume that we have a pairing function $e : G \times G \to G_T$, with the following properties: it is non-degenerate, i.e., $e(g,g) \neq 1$; it is bilinear, i.e., $e(g^a, g^b) = e(g,g)^{ab}$ for all $a, b \in \mathbb{Z}/q\mathbb{Z}$; it is computable in polynomial-time. Note that the bilinearity property implies that $e(g^a, g) = e(g, g)^a$ holds for all $a \in \mathbb{Z}/q\mathbb{Z}$.

- **1.** Show that the Decision Diffie-Hellman problem (DDH) on *G* can be solved in polynomial-time.
- **2.** Generalize the Diffie-Hellman key exchange protocol to derive a secure 1-round key exchange protocol between three parties. Formalize the underlying hardness assumption.
- 3. We consider the following signature scheme (due to Boneh, Lynn and Shacham):
 - KeyGen takes as inputs a security parameter and returns G, g, q, G_T and a description of $e: G \times G \to G_T$ satisfying the properties above. All these are made publicly available. Sample x uniformly in $\mathbb{Z}/q\mathbb{Z}$. The verification key is $vk = g^x$, whereas the signing key is sk = x.
 - Sign takes as inputs *sk* and a message $M \in \{0,1\}^*$. It computes $h = H(M) \in G$ where *H* is a hash function, and returns $\sigma = h^x$.
 - Verify takes as inputs the verification key $vk = g^x$, a message M and a signature σ , and returns 1 if and only if $e(\sigma, g) = e(H(M), vk)$.

Show that this signature scheme is EU-CMA secure under the Computational Diffie Hellman assumption (CDH) relative to G, when $H(\cdot)$ is modeled as a (full-domain hash) random oracle. Recall that the CDH problem asks to compute g^{ab} given g^a and g^b .

Exercise 2.

Chameleon hash functions

A chameleon hash function is a regular hash function with an additional algorithm Trap_Coll that computes collisions when given as input a trapdoor information. More formally, a chameleon hash function is a triple of probabilistic polynomial-time algorithms (Gen, Hash, Trap_Coll) with the following specifications:

- Gen takes as input a security parameter and returns a public key *pk* and a trapdoor *trap*.
- Hash is deterministic; it takes as inputs a public key *pk*, a message *M* and an *r* that can be viewed as a random string, and returns Hash(*pk*; *M*, *r*).
- Trap_Coll takes as inputs pk, trap, a pair (M_1, r_1) and a message M_2 , and returns r_2 such that $\operatorname{Hash}(pk; M_1, r_1) = \operatorname{Hash}(pk; M_2, r_2)$. Intuitively, it finds a collision by modifying the random string used to hash. Moreover, we want that if r_1 is uniform and independent of M_1 and M_2 , then so is r_2 .
- Collision resistance: Given pk (but not trap), it must be hard to find $(M_1, r_1) \neq (M_2, r_2)$ such that $\operatorname{Hash}(pk; M_1, r_1) = \operatorname{Hash}(pk; M_2, r_2)$.
- Uniformity: For any two messages M_1, M_2 , the distributions $\text{Hash}(pk; M_1, r)$ and $\text{Hash}(pk; M_2, r)$ for r uniform must be identical.

We consider the following chameleon hash function H_{cham} :

- Given a security parameter *n*, algorithm Gen samples (G, g, q) where $G = \langle g \rangle$ is a cyclic group of cardinality *q*, a prime number. It samples *x* uniformly in $(\mathbb{Z}/q\mathbb{Z})^{\times}$ and computes $h = g^x$. It returns pk = (G, q, g, h) and trap = x.
- To hash $M \in \mathbb{Z}/q\mathbb{Z}$ with the random string $r \in \mathbb{Z}/q\mathbb{Z}$, return $H_{cham}(pk; M, r) = g^M \cdot h^r$.
- **1.** Show that H_{cham} is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for *G*.
- 2. Describe a correct algorithm Trap_Coll.
- 3. Show that *h* is a generator of *G*. Derive that H_{cham} satisfies the uniformity property.

Chameleon hashing is used to transform a signature scheme that is existentially unforgeable under static chosen message (stat-EU-CMA) into a signature scheme that is existentially unforgeable under adaptive chosen message (EU-CMA). Stat-EU-CMA security of a signature scheme (KeyGen, Sign, Verify) is defined by the following game:

- The adversary gives to the challenger the messages (M_1, \ldots, M_q) he is querying;
- The challenger replies with a verification key vk and valid signatures (S₁,..., S_q), i.e., satisfying Verify(vk; M_i, S_i) = 1 for all i;
- The adversary sends a pair (M^*, S^*) to the challenger;
- The adversary wins the game if $M^* \notin \{M_1, \ldots, M_q\}$ and $\operatorname{Verify}(vk; M^*, S^*) = 1$.

The scheme is stat-EU-CMA-secure if no probabilistic polynomial-time adversary wins this game with non-negligible probability. We recall that in the EU-CMA security game, the message queries are sent from the adversary to the challenger **after** the challenger has made the verification key *vk* available to the adversary.

We now assume that we have a stat-EU-CMA-secure signature scheme (KeyGen, Sign, Verify) and a secure chameleon hash (Gen, Hash, Trap_Coll). Our goal is to build a signature scheme (KeyGen', Sign', Verify') that is EU-CMA-secure. We define:

- KeyGen': Run KeyGen to get a verification key vk and a secret key sk; Run Gen to get a public key pk and a trapdoor trap. Return vk' = (vk, pk) and sk' = sk.
- Sign': To sign M using sk' = sk, sample a uniform r, compute h = Hash(pk; M, r), and return S = (r, Sign(sk; h)).
- Give a (non-trivial) polynomial-time algorithm Verify' that accepts properly generated signatures.
- 5. Show that if (KeyGen, Sign, Verify) is stat-EU-CMA-secure and (Gen, Hash, Trap_Coll) is a secure chameleon hash function, then (KeyGen', Sign', Verify') is EU-CMA-secure.