
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

Tutorial 9: Digital signatures

Exercise 1. Secure pairing-based signature in the ROM
In this exercise, we assume that we have two cyclic groups G and GT of the same cardinality q, and
a generator g of G. We also assume that we have a pairing function e : G × G → GT , with the
following properties: it is non-degenerate, i.e., e(g, g) 6= 1; it is bilinear, i.e., e(ga, gb) = e(g, g)ab for
all a, b ∈ Z/qZ; it is computable in polynomial-time. Note that the bilinearity property implies that
e(ga, g) = e(g, ga) = e(g, g)a holds for all a ∈ Z/qZ.

1. Show that the Decision Diffie-Hellman problem (DDH) on G can be solved in polynomial-time.

2. Generalize the Diffie-Hellman key exchange protocol to derive a secure 1-round key exchange
protocol between three parties. Formalize the underlying hardness assumption.

3. We consider the following signature scheme (due to Boneh, Lynn and Shacham):

• KeyGen takes as inputs a security parameter and returns G, g, q, GT and a description of
e : G × G → GT satisfying the properties above. All these are made publicly available.
Sample x uniformly in Z/qZ. The verification key is vk = gx, whereas the signing key
is sk = x.

• Sign takes as inputs sk and a message M ∈ {0, 1}∗. It computes h = H(M) ∈ G where H is
a hash function, and returns σ = hx.

• Verify takes as inputs the verification key vk = gx, a message M and a signature σ, and
returns 1 if and only if e(σ, g) = e(H(M), vk).

Show that this signature scheme is EU-CMA secure under the Computational Diffie Hellman
assumption (CDH) relative to G, when H(·) is modeled as a (full-domain hash) random oracle.
Recall that the CDH problem asks to compute gab given ga and gb.

Exercise 2. Chameleon hash functions
A chameleon hash function is a regular hash function with an additional algorithm Trap_Coll that
computes collisions when given as input a trapdoor information. More formally, a chameleon hash
function is a triple of probabilistic polynomial-time algorithms (Gen, Hash, Trap_Coll) with the fol-
lowing specifications:

• Gen takes as input a security parameter and returns a public key pk and a trapdoor trap.

• Hash is deterministic; it takes as inputs a public key pk, a message M and an r that can be viewed
as a random string, and returns Hash(pk; M, r).

• Trap_Coll takes as inputs pk, trap, a pair (M1, r1) and a message M2, and returns r2 such that
Hash(pk; M1, r1) = Hash(pk; M2, r2). Intuitively, it finds a collision by modifying the random
string used to hash. Moreover, we want that if r1 is uniform and independent of M1 and M2,
then so is r2.

• Collision resistance: Given pk (but not trap), it must be hard to find (M1, r1) 6= (M2, r2) such
that Hash(pk; M1, r1) = Hash(pk; M2, r2).

• Uniformity: For any two messages M1, M2, the distributions Hash(pk; M1, r) and Hash(pk; M2, r)
for r uniform must be identical.

We consider the following chameleon hash function Hcham:

1



• Given a security parameter n, algorithm Gen samples (G, g, q) where G = 〈g〉 is a cyclic group
of cardinality q, a prime number. It samples x uniformly in (Z/qZ)× and computes h = gx. It
returns pk = (G, q, g, h) and trap = x.

• To hash M ∈ Z/qZ with the random string r ∈ Z/qZ, return Hcham(pk; M, r) = gM · hr.

1. Show that Hcham is collision-resistant, under the assumption that the Discrete Logarithm Problem
(DLP) is hard for G.

2. Describe a correct algorithm Trap_Coll.

3. Show that h is a generator of G. Derive that Hcham satisfies the uniformity property.

Chameleon hashing is used to transform a signature scheme that is existentially unforgeable under
static chosen message (stat-EU-CMA) into a signature scheme that is existentially unforgeable under
adaptive chosen message (EU-CMA). Stat-EU-CMA security of a signature scheme (KeyGen, Sign, Verify)
is defined by the following game:

• The adversary gives to the challenger the messages (M1, . . . , Mq) he is querying;

• The challenger replies with a verification key vk and valid signatures (S1, . . . , Sq), i.e., satisfying
Verify(vk; Mi, Si) = 1 for all i;

• The adversary sends a pair (M∗, S∗) to the challenger;

• The adversary wins the game if M∗ /∈ {M1, . . . , Mq} and Verify(vk; M∗, S∗) = 1.

The scheme is stat-EU-CMA-secure if no probabilistic polynomial-time adversary wins this game with
non-negligible probability. We recall that in the EU-CMA security game, the message queries are sent
from the adversary to the challenger after the challenger has made the verification key vk available to
the adversary.
We now assume that we have a stat-EU-CMA-secure signature scheme (KeyGen, Sign, Verify) and a
secure chameleon hash (Gen, Hash, Trap_Coll). Our goal is to build a signature scheme (KeyGen’,
Sign’, Verify’) that is EU-CMA-secure. We define:

• KeyGen’: Run KeyGen to get a verification key vk and a secret key sk; Run Gen to get a public key
pk and a trapdoor trap. Return vk′ = (vk, pk) and sk′ = sk.

• Sign’: To sign M using sk′ = sk, sample a uniform r, compute h = Hash(pk; M, r), and return S =
(r, Sign(sk; h)).

4. Give a (non-trivial) polynomial-time algorithm Verify’ that accepts properly generated signa-
tures.

5. Show that if (KeyGen, Sign, Verify) is stat-EU-CMA-secure and (Gen, Hash, Trap_Coll) is a
secure chameleon hash function, then (KeyGen’, Sign’, Verify’) is EU-CMA-secure.

2


	1. Secure pairing-based signature in the ROM
	2. Chameleon hash functions

