Tutorial 7: Public key encryption

Exercise 1.

HMAC
Before HMAC was invented, it was quite common to define a MAC by $\operatorname{Mac}_{k}(m)=H^{s}(k \| m)$ where H is a collision-resistant hash function. Show that this MAC is not unforgeable when H is constructed via the Merkle-Damgård transform.

Exercise 2.

SIS
Definition 1 (Learning with Errors). Let $\ell<k \in \mathbb{N}, n<m \in \mathbb{N}, q=2^{k}, B=2^{\ell}, \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text {LWE,A }}=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $\mathbf{e} \hookleftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^{m} \cap \mathbb{Z}^{m}\right)$.
The $L W E_{\mathbf{A}}$ assumption states that, given suitable parameters k, ℓ, m, n, it is computationally hard to distinguish $D_{\text {LWE,A }}$ from the distribution $\left(\mathbf{A}, U\left(\mathbb{Z}_{q}^{m}\right)\right)$.

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ with $m>n \lg q$, let us define the following hash function:

$$
\begin{array}{ccc}
H_{\mathbf{A}}:\{0,1\}^{m} & \rightarrow & \{0,1\}^{n} \\
\mathbf{x} & \mapsto & \mathbf{x}^{T} \cdot \mathbf{A} \bmod q .
\end{array}
$$

1. Why finding a sufficiently "short" non-zero vector \mathbf{z} such that $\mathbf{z}^{T} \cdot \mathbf{A}=\mathbf{0}$ is enough to distinguish $D_{\text {LWE,A }}$ from the distribution $\left(\mathbf{A}, U\left(\mathbb{Z}_{q}^{m}\right)\right)$? Define "short".
2. Show that $H_{\mathbf{A}}$ is collision-resistant under the $L W E_{\mathbf{A}}$ assumption.
3. Is it still a secure hash function if we let $H_{\mathbf{A}}: \mathbf{x} \in\{0,1\}^{m} \mapsto \mathbf{x}^{T} \cdot \mathbf{A} \in \mathbb{Z}^{n}$? (without the reduction modulo q).

Exercise 3.
One-time to Many-Times
Let us define the following experiments for $b \in\{0,1\}$, and $Q=\operatorname{poly}(\lambda)$.

\mathcal{A}	$\operatorname{Exp}_{b}^{\text {many-CPA }}$	\mathcal{C}
	$\leftarrow \frac{p k}{}$	$(p k, s k) \leftarrow \operatorname{Keygen}\left(1^{\lambda}\right)$

Choose $\left(m_{0}^{(i)}, m_{1}^{(i)}\right)_{i=1}^{Q}$

$$
\xrightarrow{\left(m_{0}^{(i)}, m_{1}^{(i)}\right)_{i=1}^{Q}}
$$

$$
\left(c_{i}^{\star}=\operatorname{Enc}_{p k}\left(m_{b}^{(i)}\right)\right)_{i=1}^{Q}
$$

Output $b^{\prime} \in\{0,1\}$
The advantage of \mathcal{A} in the many-time CPA game is defined as

$$
\operatorname{Advt}^{\mathrm{many}-\mathrm{CPA}}(\mathcal{A})=\left|\operatorname{Pr}_{(p k, s k)}\left[\mathcal{A} \rightarrow 1 \mid \operatorname{Exp}_{1}^{\mathrm{many}-\mathrm{CPA}}\right]-\operatorname{Pr}_{(p k, s k)}\left[\mathcal{A} \rightarrow 1 \mid \operatorname{Exp}_{0}^{\mathrm{many}-\mathrm{CPA}}\right]\right|
$$

1. Recall the definition of CPA-security that was given during the course. What is the difference?
2. Show that this two definitions are equivalent.
3. Do we have a similar equivalence in the secret-key setting?

Exercise 4.

We define a variant of the LWE problem with multiple secrets as follows.
Definition 2 (Multiple-secrets-LWE distribution). Let $\ell<k \in \mathbb{N}, n<m \in \mathbb{N}, q=2^{k}, B=2^{\ell}$, $t=\operatorname{poly}(m)$ be some integer, and $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The multiple-secrets-LWE distribution is defined as follows:
$D_{m s L W E, A}=(A, A \cdot S+E \bmod q)$ for $S \hookleftarrow U\left(\mathbb{Z}_{q}^{n \times t}\right)$ and $E \hookleftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}-1\right]^{m \times t} \cap \mathbb{Z}^{m \times t}\right)$.
Note. The secret is now a matrix instead of a vector. Each column of this matrix can be seen as a secret for the LWE distribution.

1. Show that if the LWE assumption holds, then the multiple-secrets-LWE distribution is computationally indistinguishable from the uniform distribution $U\left(\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m \times t}\right)$.
Hint: you may want to use a hybrid argument.
We study another variant of the LWE problem, where the matrix A is chosen uniformly among the matrices with coefficients in $\{0,1\}$ instead of with coefficients in \mathbb{Z}_{q}. We want to show that this variant of LWE is also secure, as long as the LWE assumption holds.

Definition 3 (Binary-matrix-LWE). Let $\ell<k \in \mathbb{N}, n<m \in \mathbb{N}, q=2^{k}, B=2^{\ell}, A \hookleftarrow U\left(\{0,1\}^{m \times n}\right)$. The binary-matrix-LWE distribution is defined as follows: $D_{b m \mathrm{LWE}, A}=(A, A \cdot s+e \bmod q)$ for $s \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}-1\right]^{m} \cap \mathbb{Z}^{m}\right)$.
We write binary-matrix-LWE $E_{n, m, \ell, k}$ when the parameters needs to be specified.
2. Show that there exist a matrix $G \in \mathbb{Z}_{q}^{n k \times n}$ such that for any matrix $A \in \mathbb{Z}_{q}^{m \times n}$, there exist a binary matrix $A_{b i n} \in\{0,1\}^{m \times n k}$ such that $A=A_{b i n} G$.
3. Show that if A is sampled uniformly in $\mathbb{Z}_{q}^{m \times n}$, then $A_{b i n}$ is uniform in $\{0,1\}^{m \times n k}$.
4. Let $s \in \mathbb{Z}_{q}^{n}$ be sampled uniformly. Is $G \cdot s$ still a uniform vector in $\mathbb{Z}_{q}^{n k}$? Is it computationally indistinguishable from a uniform vector?
5. Let $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and e be some error sampled as in the LWE distribution. Let s be any vector (not necessarily uniform) and let u be either $A s+e$ or some uniform vector in \mathbb{Z}_{q}^{m}. Show that given (A, u) you can construct $\left(A, u^{\prime}\right)$ such that u^{\prime} is either uniform in \mathbb{Z}_{q}^{m} or is of the form $A s^{\prime}+e$ for s^{\prime} uniform in \mathbb{Z}_{q}^{n}.
6. Show that if the $\mathrm{LWE}_{n, m, \ell, k}$ problem holds, then the binary-matrix- $\mathrm{LWE}_{k n, m, \ell, k}$ distribution is indistinguishable from uniform.
7. Is the LWE problem still hard when both A and s are binary?

Exercise 5.

Pollard-rho
Let \mathbb{G} be a cyclic group generated by g, of (known) prime order q, and let h be an element of \mathbb{G}. Let $F: \mathbb{G} \rightarrow \mathbb{Z}_{q}$ be a nonzero function, and let us define the function $H: \mathbb{G} \rightarrow \mathbb{G}$ by $H(\alpha)=\alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called Pollard ρ Algorithm).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$
Output: $x \in\{0, \ldots, q-1\}$ such that $h=g^{x}$ or fail.

1. $i \leftarrow 1$
2. $x \leftarrow 0, \alpha \leftarrow h$
$y \leftarrow F(\alpha) ; \beta \leftarrow H(\alpha)$
while $\alpha \neq \beta$ do
$x \leftarrow x+F(\alpha) \bmod q ; \alpha \leftarrow H(\alpha)$
$y \leftarrow y+F(\beta) \bmod q ; \beta \leftarrow H(\beta)$
$y \leftarrow y+F(\beta) \bmod q ; \beta \leftarrow H(\beta)$
$i \leftarrow i+1$
end while
if $i<q$ then
return $(x-y) / i \bmod q$
else
return FAIL
end if
To study this algorithm, we define the sequence $\left(\gamma_{i}\right)$ by $\gamma_{1}=h$ and $\gamma_{i+1}=H\left(\gamma_{i}\right)$ for $i \geqslant 1$.
3. Show that in the while loop from lines 4 to 9 of the algorithm, we have $\alpha=\gamma_{i}=g^{x} h^{i}$ and $\beta=\gamma_{2 i}=g^{y} h^{2 i}$.
4. Show that if this loop finishes with $i<q$, then the algorithm returns the discrete logarithm of h in basis g.
5. Let j be the smallest integer such that $\gamma_{j}=\gamma_{k}$ for $k<j$. Show that $j \leqslant q+1$ and that the loop ends with $i<j$.
6. Show that if F is a random function, then the average execution time of the algorithm is in $O\left(q^{1 / 2}\right)$ multiplications in \mathbb{G}.
