Pedersen's hash function

Tutorial 6: Hash functions

Exercise 1.

Pedersen's hash function is as follows:

- Given a security parameter *n*, algorithm Gen samples (G, g, q) where $G = \langle g \rangle$ is a cyclic group of cardinality *q*, a prime number. It then sets $g_1 = g$ and samples g_i uniformly in *G* for all $i \in \{2, ..., k\}$, where $k \ge 2$ is some parameter. Finally, it returns $(G, q, g_1, ..., g_k)$.
- The hash of message $M = (M_1, \ldots, M_k) \in (\mathbb{Z}/q\mathbb{Z})^k$ is $H(M) = \prod_{i=1}^k g_i^{M_i} \in G$.
- **1.** Assume for this question that *G* is a subgroup of prime order *q* of $(\mathbb{Z}/p\mathbb{Z})^{\times}$, where p = 2q + 1 is prime. What is the compression factor in terms of *k* and *p*?
- **2.** Assume for this question that k = 2. Show that Pedersen's hash function is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for *G*.
- **3.** Same question as the previous one, with $k \ge 2$ arbitrary.

Exercise 2.

1. We define the scheme "Encrypt and tag" by: for a message *m*, independent keys *k* and *k'*, a CPA-secure encryption *Enc* and a secure MAC *Sign*, let c = Enc(k,m) and t = Sign(k',m), return (c,t). Is this scheme CCA-secure ?

Exercise 3.

Consider the following construction of symmetric encryption.

Gen(1^{λ}): Choose a random key $K_1 \leftarrow U(\{0,1\}^{\lambda})$ for an IND-CPA secure symmetric encryption scheme (Gen', Enc', Dec'). Choose a random key $K_0 \leftarrow U(\{0,1\}^{\lambda})$ for a MAC $\Pi = (\text{Gen}, \text{Mac}, \text{Verify})$. The secret key is $K = (K_0, K_1)$

Enc(K, M): To encrypt M, do the following.

- 1. Compute $c = Enc'(K_1, M)$.
- 2. Compute $t = \Pi$.Mac(K_0, c).

Return C = (t, c).

Dec(*K*, *C*): Return \perp if \prod .Verify(*K*₀, *c*, *t*) = 0. Otherwise, return *M* = Dec'(*K*₁, *c*).

Recall that the MAC is said to be unforgeable if, in the security game, the adversary succeeds if it manages to create a valid pair (m, t) where t is a valid signature for m and m has never been queried before. The MAC is said to be **strongly** unforgeable if we replace in the previous definition "m has never been queried" by "(m, t) has never been sent by the challenger".

- **1.** Show that the scheme may not be IND-CCA secure if the MAC Π is unforgeable (but not strongly) under chosen-message attacks.
- **2.** Prove that the scheme is IND-CCA secure assuming that: (i) (Gen', Enc', Dec') is IND-CPA-secure; (ii) Π is stronly unforgeable under chosen-message attacks.

Hint : you may want to introduce ValidQuery, the event that the attacker A against the CCA security of the scheme makes a decryption query on (c, t) which was not previously obtained by the encryption oracle but such that t is a valid signature of c.

Authenticated encryption

CCA security

Exercise 4.

НМАС

SIS

One-time to Many-Times

1. Let (Gen, H_1) and (Gen', H_2) be collision-resistant hash functions such that $H_1 : \{0,1\}^n \to \{0,1\}^m$ and $H_2 : \{0,1\}^m \to \{0,1\}^\ell$ (with $n > m > \ell$). Is (Gen, \hat{H}) defined by $\hat{H}^{(s_1,s_2)} =_{def} H_2^{s_2}(H_1^{s_1}(x))$ necessarily collision-resistant?

Exercise 5.

Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k \parallel m)$ where *H* is a collision-resistant hash function. Show that this MAC is not unforgeable when *H* is constructed via the Merkle-Damgård transform.

Exercise 6.

Definition 1 (Learning with Errors). Let $\ell < k \in \mathbb{N}$, $n < m \in \mathbb{N}$, $q = 2^k$, $B = 2^\ell$, $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text{LWE},\mathbf{A}} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftrightarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^m \cap \mathbb{Z}^m\right)$.

The *LWE*_{**A**} *assumption* states that, given suitable parameters *k*, ℓ , *m*, *n*, it is computationally hard to distinguish $D_{\text{LWE},\mathbf{A}}$ from the distribution $(\mathbf{A}, U(\mathbb{Z}_q^m))$.

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ with $m > n \lg q$, let us define the following hash function:

$$\begin{aligned} H_{\mathbf{A}} : & \{0,1\}^m & \to & \{0,1\}^n \\ & \mathbf{x} & \mapsto & \mathbf{x}^T \cdot \mathbf{A} \bmod q. \end{aligned}$$

- Why finding a sufficiently "short" non-zero vector z such that z^T · A = 0 is enough to distinguish D_{LWE,A} from the distribution (A, U(Z^m_q))? Define "short".
- **2.** Show that H_A is *collision-resistant* under the LWE_A assumption.
- **3.** Is it still a secure hash function if we let $H_{\mathbf{A}} : \mathbf{x} \in \{0, 1\}^m \mapsto \mathbf{x}^T \cdot \mathbf{A} \in \mathbb{Z}^n$? (without the reduction modulo *q*).

Exercise 7.

Let us define the following experiments for $b \in \{0, 1\}$, and $Q = poly(\lambda)$.

$$\begin{array}{c|c} & \mathbf{Exp}_{b}^{\text{many-CPA}} \\ & \mathcal{L} \\ \hline \\ \mathcal{A} & & \mathcal{C} \\ \hline \\ \text{Choose } \left(m_{0}^{(i)}, m_{1}^{(i)} \right)_{i=1}^{Q} & & \\ & & (pk, sk) \leftarrow \text{Keygen}(1^{\lambda}) \\ & & \\ \hline \\ \text{Choose } \left(m_{0}^{(i)}, m_{1}^{(i)} \right)_{i=1}^{Q} & & \\ & & \\ & & \\ & & \\ & & \\ \hline \\ \text{Choose } \left(m_{0}^{(i)}, m_{1}^{(i)} \right)_{i=1}^{Q} & & \\ &$$

Output $b' \in \{0, 1\}$

The advantage of \mathcal{A} in the many-time CPA game is defined as

$$Advt^{many-CPA}(\mathcal{A}) = \left| \Pr_{(pk,sk)} [\mathcal{A} \to 1 \mid \mathbf{Exp}_1^{many-CPA}] - \Pr_{(pk,sk)} [\mathcal{A} \to 1 \mid \mathbf{Exp}_0^{many-CPA}] \right|$$

- 1. Recall the definition of CPA-security that was given during the course. What is the difference?
- 2. Show that this two definitions are equivalent.
- 3. Do we have a similar equivalence in the secret-key setting?