Tutorial 5: CTR mode and MACs

Exercise 1.

Security of the CTR encryption scheme Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 ||M_1|| \dots ||M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0,1\}^n$.
- Return $IV ||C_0||C_1|| ... ||C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all *i*.

The goal of this exercise is to prove the security of the CTR encryption mode against (many-time) chosen plaintext attacks, when the PRF F is secure.

- 1. Recall the definition of security of an encryption scheme against (many-time) chosen plaintext attacks.
- **2.** Assume an attacker makes q encryption queries. Let IV_1, \ldots, IV_q be the corresponding IV's. Let Twice denote the event "there exist $i \neq j \leq q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j$ $k_i \mod 2^n$." Show that the probability of Twice is bounded from above by $q^2 d/2^n$.
- **3.** Assume the PRF *F* is replaced by a uniformly chosen function $f : \{0,1\}^n \to \{0,1\}^n$. Bound the distinguishing advantage of an adversary A against this idealized version of CTR, as a function of *d* and the number of encryption queries *q*.
- 4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF F. Give a lower bound on the advantage degradation of the reduction.

Exercise 2.

MACs and PRFs

1. We have seen that pseudo-random functions imply secure deterministic MACs for fixed-length messages.

Give a construction of a secure deterministic MAC which is not a pseudo-random function.

- 2. Let F be a secure pseudorandom function (PRF). We consider the following message authentication code (MAC), for messages of length 2*n*: The shared key is a key $k \in \{0, 1\}^n$ of the PRF *F*; To authenticate a message $m_1 || m_2$ with $m_1, m_2 \in \{0, 1\}^n$, compute the tag $t = (F(k, m_1), F(k, (F(k, m_2))))$. Is it a secure MAC?
- **3.** Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a secure PRF. Consider the following MAC. To authenticate a message $m = m_1 || m_2 || \dots || m_d$ where $m_i \in \{0, 1\}^n$ for all *i*, using a key *k*, compute

$$t = F(k, m_1) \oplus \ldots \oplus F(k, m_d).$$

Is it a secure MAC?

Exercise 3.

MACs with verification oracle

In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given access to a MAC generation oracle Mac(K, .).

At each query M, the challenger computes $t \leftarrow Mac(K, M)$, returns t and updates the set of MAC queries $Q := Q \cup \{(t, M)\}$, which is initialized to $Q := \emptyset$. At the end of the game, the adversary outputs a pair (M^*, t^*) and wins if: (i) Verify $(K, M^*, t^*) = 1$; (ii) $(M^*, t^*) \notin Q$.¹

We consider an even stronger definition where the adversary is additionally given access to a verification oracle Verify(K,.,.). At each verification query, the adversary chooses a pair (M, t) and the challenger returns the output of Verify(K, M, t) $\in \{0, 1\}$. In this context, the adversary wins if one of these verification queries (M, t) satisfies: (i) Verify(K, M, t) = 1; (ii) (M, t) $\notin Q$.

1. Show that the verification oracle does not make the adversary any stronger. Namely, any strongly unforgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

Exercise 4.

CBC-MAC

Prove that the following modifications of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC:

1. Modify CBC-MAC so that a random *IV* (rather than IV = 0) is used each time a tag is computed (and the *IV* is output along with t_{ℓ}).

Figure 1: CBC-MAC

2. Modify CBC-MAC so that all the outputs of *F* are output, rather than just the last one.

We now consider the following ECBC-MAC scheme, let $F : K \times X \to X$ be a PRP, we define $F_{ECBC} : K^2 \times X^{\leq L} \to X$ as in Figure 2, where k_1 and k_2 are two independent keys.

If the message length is not a multiple of the block length *n*, we add a pad to the last block: $m = m_1 | \dots | m_{d-1} | (m_d || \text{pad}(m))$.

3. Show that there exists a padding for which this scheme is not secure.

For the security of the scheme, the padding must be invertible, and in particular for any message $m_0 \neq m_1$ we need to have $m_0 \| \text{pad}(m_0) \neq m_1 \| \text{pad}(m_1)$. The ISO norm is to pad with $10 \cdots 0$, and if the message length is a multiple of the block length, to add a new "dummy" block $10 \cdots 0$ of length *n*.

4. Explain why the scheme is not secure if this padding does not add a new block if the message length is a multiple of the block length.

The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k_1, k_2) . If the message length is not a multiple of the block length, then we append the ISO padding to it and then we also XOR this last block with the key k_1 . If the message length is a multiple of the block length, then we XOR this last block with the key k_2 . After that, we perform a last encryption with F(k, .) to obtain the tag.

¹In the definition of **standard** unforgeability under chosen-message attacks, condition (ii) is replaced by $\forall (M_i, t_i) \in Q$, $M^* \neq M_i$.

Figure 2: ECBC-MAC

Exercise 5.

Pseud-random synthetizers

Let $n \in \mathbb{N}$ be a security parameter. Let \mathbb{G} be a cyclic group of prime order $q > 2^n$ with a generator $g \in \mathbb{G}$. Recall that the Decisional Diffie-Hellman (DDH) assumption says that the following distributions

 $D_0 := \{ (g^a, g^b, g^{ab}) \mid a, b \leftarrow U(\mathbb{Z}_q) \}, \qquad D_1 := \{ (g^a, g^b, g^c) \mid a, b, c \leftarrow U(\mathbb{Z}_q) \}$

are computationally indistinguishable.

A synthesizer $G : \mathbb{Z}_q^n \times \mathbb{Z}_q^n \to \mathbb{G}^{n \times n}$ is a length-squaring function which takes as input a random seed made of 2n scalars $\vec{a} = (a_1, \dots, a_n) \leftarrow U(\mathbb{Z}_q^n)$, $\vec{b} = (b_1, \dots, b_n) \leftarrow U(\mathbb{Z}_q^n)$ and outputs a $n \times n$ matrix

$$G((a_1,\ldots,a_n),(b_1,\ldots,b_n)) = (g^{a_ib_j})_{i,j\in\{1,\ldots,n\}} = \begin{bmatrix} g^{a_1b_1} & \cdots & g^{a_1b_n} \\ g^{a_2b_1} & \cdots & g^{a_2b_n} \\ \vdots & \ddots & \vdots \\ g^{a_nb_1} & \cdots & g^{a_nb_n} \end{bmatrix}.$$
 (1)

- **1.** Show that an unbounded adversary (which can compute discrete logarithms in \mathbb{G}) can distinguish an output of *G* from a truly random matrix in $\mathbb{G}^{n \times n}$.
- **2.** Show that $G : \mathbb{Z}_q^n \times \mathbb{Z}_q^n \to \mathbb{G}^{n \times n}$ is a pseudo-random generator under the DDH assumption in the group \mathbb{G} .

Hint (but you may choose not to read it): Consider a sequence of n^2 hybrid experiments $\text{Exp}_{k,\ell}$, for $k, \ell \in \{1, ..., n\}$, where the output of $G((a_1, ..., a_n), (b_1, ..., b_n))$ is replaced by a matrix of the form

$$G^{(k,\ell)}((a_1,\ldots,a_n),(b_1,\ldots,b_n)) = (g^{u_{ij}})_{i,j\in\{1,\ldots,n\}}$$

where $u_{ij} = a_i b_j$ if i > k or $(i = k) \land (j > \ell)$ and $u_{ij} \leftarrow U(\mathbb{Z}_q)$ otherwise. Define $G^{(0,0)}$ to be actual function of (1).