
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

Tutorial 5: CTR mode and MACs

Exercise 1. Security of the CTR encryption scheme
Let F : {0, 1}n × {0, 1}n → {0, 1}n be a PRF. To encrypt a message M ∈ {0, 1}d·n, CTR proceeds as
follows:

- Write M = M0‖M1‖ . . . ‖Md−1 with each Mi ∈ {0, 1}n.

- Sample IV uniformly in {0, 1}n.

- Return IV‖C0‖C1‖ . . . ‖Cd−1 with Ci = Mi ⊕ F(k, IV + i mod 2n) for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against (many-time)
chosen plaintext attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against (many-time) chosen plaintext
attacks.

2. Assume an attacker makes q encryption queries. Let IV1, . . . , IVq be the corresponding IV’s.
Let Twice denote the event “there exist i 6= j ≤ q and ki, k j < d such that IVi + ki = IVj +

k j mod 2n.” Show that the probability of Twice is bounded from above by q2d/2n.

3. Assume the PRF F is replaced by a uniformly chosen function f : {0, 1}n → {0, 1}n. Bound the
distinguishing advantage of an adversary A against this idealized version of CTR, as a function
of d and the number of encryption queries q.

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on
PRF F, then there exists a probabilistic polynomial-time adversary B against the PRF F. Give a
lower bound on the advantage degradation of the reduction.

Exercise 2. MACs and PRFs

1. We have seen that pseudo-random functions imply secure deterministic MACs for fixed-length
messages.

Give a construction of a secure deterministic MAC which is not a pseudo-random function.

2. Let F be a secure pseudorandom function (PRF). We consider the following message authenti-
cation code (MAC), for messages of length 2n: The shared key is a key k ∈ {0, 1}n of the PRF F; To
authenticate a message m1‖m2 with m1, m2 ∈ {0, 1}n, compute the tag t = (F(k, m1), F(k, (F(k, m2))).
Is it a secure MAC?

3. Let F : {0, 1}n × {0, 1}n → {0, 1}n be a secure PRF. Consider the following MAC. To authenticate
a message m = m1‖m2‖ . . . ‖md where mi ∈ {0, 1}n for all i, using a key k, compute

t = F(k, m1)⊕ . . .⊕ F(k, md).

Is it a secure MAC?

Exercise 3. MACs with verification oracle
In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given
access to a MAC generation oracle Mac(K, .).

1

At each query M, the challenger computes t ← Mac(K, M), returns t and updates the set of MAC
queries Q := Q ∪ {(t, M)}, which is initialized to Q := ∅. At the end of the game, the adversary
outputs a pair (M?, t?) and wins if: (i) Verify(K, M?, t?) = 1; (ii) (M?, t?) 6∈ Q.1

We consider an even stronger definition where the adversary is additionally given access to a veri-
fication oracle Verify(K, ., .). At each verification query, the adversary chooses a pair (M, t) and the
challenger returns the output of Verify(K, M, t) ∈ {0, 1}. In this context, the adversary wins if one of
these verification queries (M, t) satisfies: (i) Verify(K, M, t) = 1; (ii) (M, t) 6∈ Q.

1. Show that the verification oracle does not make the adversary any stronger. Namely, any strongly
unforgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

Exercise 4. CBC-MAC
Prove that the following modifications of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-
length MAC:

1. Modify CBC-MAC so that a random IV (rather than IV = 0) is used each time a tag is computed
(and the IV is output along with t`).

mt−1

K F

result

· · ·

m2

K F

IV = 0

m1

K F

Figure 1: CBC-MAC

2. Modify CBC-MAC so that all the outputs of F are output, rather than just the last one.

We now consider the following ECBC-MAC scheme, let F : K × X → X be a PRP, we define FECBC :
K2 × X≤L → X as in Figure 2, where k1 and k2 are two independent keys.
If the message length is not a multiple of the block length n, we add a pad to the last block: m =
m1| . . . |md−1|(md‖pad(m)).

3. Show that there exists a padding for which this scheme is not secure.

For the security of the scheme, the padding must be invertible, and in particular for any message
m0 6= m1 we need to have m0‖pad(m0) 6= m1‖pad(m1). The ISO norm is to pad with 10 · · · 0, and if
the message length is a multiple of the block length, to add a new "dummy" block 10 · · · 0 of length n.

4. Explain why the scheme is not secure if this padding does not add a new block if the message
length is a multiple of the block length.

The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k1, k2). If the
message length is not a multiple of the block length, then we append the ISO padding to it and then
we also XOR this last block with the key k1. If the message length is a multiple of the block length,
then we XOR this last block with the key k2. After that, we perform a last encryption with F(k, .) to
obtain the tag.

1In the definition of standard unforgeability under chosen-message attacks, condition (ii) is replaced by ∀(Mi , ti) ∈ Q,
M? 6= Mi .

2

mt−1

K1

K2

F

F

result

· · ·

m2

K1 F

IV = 0

m1

K1 F

Figure 2: ECBC-MAC

Exercise 5. Pseud-random synthetizers
Let n ∈ N be a security parameter. Let G be a cyclic group of prime order q > 2n with a generator g ∈
G. Recall that the Decisional Diffie-Hellman (DDH) assumption says that the following distributions

D0 := {(ga, gb, gab) | a, b← U(Zq)}, D1 := {(ga, gb, gc) | a, b, c← U(Zq)}

are computationally indistinguishable.

A synthesizer G : Zn
q ×Zn

q → Gn×n is a length-squaring function which takes as input a random seed

made of 2n scalars~a = (a1, . . . , an)← U(Zn
q),~b = (b1, . . . , bn)← U(Zn

q) and outputs a n× n matrix

G
(
(a1, . . . , an), (b1, . . . , bn)

)
=
(

gaibj
)

i,j∈{1,...,n}
=


ga1b1 . . . ga1bn

ga2b1 . . . ga2bn

...
. . .

...
ganb1 . . . ganbn

 . (1)

1. Show that an unbounded adversary (which can compute discrete logarithms in G) can distinguish
an output of G from a truly random matrix in Gn×n.

2. Show that G : Zn
q ×Zn

q → Gn×n is a pseudo-random generator under the DDH assumption in the
group G.

Hint (but you may choose not to read it): Consider a sequence of n2 hybrid experiments Expk,` ,
for k, ` ∈ {1, . . . , n}, where the output of G((a1, . . . , an), (b1, . . . , bn)) is replaced by a matrix of the
form

G(k,`)((a1, . . . , an), (b1, . . . , bn)
)
=
(

guij
)

i,j∈{1,...,n}

where uij = aibj if i > k or (i = k)∧ (j > `) and uij ← U(Zq) otherwise. Define G(0,0) to be actual
function of (1).

3

	1. Security of the CTR encryption scheme
	2. MACs and PRFs
	3. MACs with verification oracle
	4. CBC-MAC
	5. Pseud-random synthetizers

