
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

Tutorial 3: PRG and Symmetric encryption schemes

Exercise 1. Learning with errors is back.

Definition 1 (Learning with Errors). Let ` < k ∈ N, n < m ∈ N, q = 2k, B = 2`, A ←↩ U(Zm×n
q). The

Learning with Errors (LWE) distribution is defined as follows: DLWE,A = (A, A · s+ e mod q) for s←↩ U(Zn
q)

and e←↩ U
([
− B

2 , B
2 − 1

]m
∩Zm

)
.

The LWE assumption states that, given suitable parameters k, `, m, n, it is computationally hard to dis-
tinguish DLWE,A from the distribution (A, U(Zm

q)).
Let us consider the private-key encryption scheme below, which works under the following public
parameters: k, `, m, n, A, for which the LWE assumption holds.
Note. Here, a mod q denotes the representative of the class of a in [− q

2 , q
2 − 1] ∩ Z and not in [0, q−

1] ∩Z (this will ease the description of the scheme).

Keygen(1λ): from 1λ, this algorithm outputs a random vector s←↩ U(Zn
q) as a secret key.

Encs(m): from the secret key s and a message m ∈ {0, 1}m, the algorithm Enc samples a random vector

e←↩ U
([
− B

2 , B
2

]m
∩Zm

)
and outputs c = As + e + q

2m mod q as a ciphertext.

Decs(c): from the secret key s and a ciphertext c, the decryption algorithm computes v = c− A · s.
Then Dec constructs the message m′ from v: for each component vi of v, sets the corresponding
component of m′ as follows: 0 if −q/4 ≤ vi < q/4, and 1 otherwise.

1. Prove the correctness of this cipher.

2. Show that this cipher is computationally secure.
If you take a look at this cipher, you can view it as a one-time pad on q

2m, which means that the
message is hidden in the most significant bit of e + q

2m.
Now, if one wants to hide the message in the least significant bit of the OTP, one solution is to encrypt
a message as: c = 2 · (A · s + e) +m mod q.

3. Construct a “decryption” algorithm that does not use the secret key to recover m (i.e., show that
this scheme is not secure).

4. Why is it also a bad idea to encrypt as c = A · s + 2e +m?

Exercise 2. Symmetric encryption scheme from a PRG.
Let G : {0, 1}s → {0, 1}n be a pseudo-random generator. We define a symmetric encryption scheme
(KeyGen, Enc, Dec) by

• Keygen(1s) : outputs a uniform element k ∈ {0, 1}s;

• Enc(k, m) = m⊕ G(k), where m ∈ {0, 1}n and k ∈ {0, 1}s;

• Dec(k, c) = c⊕ G(k), where c ∈ {0, 1}n and k ∈ {0, 1}s,

where ⊕ denotes a xor performed component wise.

1. Show that this scheme is correct.

Let A be a PPT algorithm such that there exist two messages m0 and m1 such that

Adv(A) := Pr
k,β
(A(Enc(k, mβ)) = β) ≥ 1/2 + ε,

where the randomness is over the uniform choices of k, β and the internal randomness of A.

1

2. Show that there exists a PPT adversary A′ such that

Adv(A′) = Pr
b←U({0,1})

x←Db

(A′(x) = b) ≥ 1/2 + ε/2,

where D0 = G(U({0, 1}s)) and D1 = U({0, 1}n). What does it prove about the security of the
encryption scheme?

Exercise 3. Arbitrary length encryption.
Toward Arbitrary-length Encryption. An arbitrary-length encryption scheme is a triple of algo-
rithms (KeyGen, Enc, Dec) such that KeyGen outputs a key k ∈ {0, 1}n, Enc takes as inputs a key k,
and a message M of arbitrary length ` and returns a ciphertext C, and Dec takes as inputs a key k and
a ciphertext C and returns a plaintext M. We require that for all k, and for all M of arbitrary length,
we have Dec(k, Enc(k, M)) = M.

We define one-time CPA-security for arbitrary-length messages with the following two games. For
each b ∈ {0, 1}, Gameb starts by the challenger generating a key k uniformly at random. Then, the
adversary should send two distinct plaintexts M0 and M1 of equal lengths to the challenger. The
challenger encrypts Mb and sends the corresponding ciphertext. Then, the adversary outputs a bit b′.
The scheme is considered secure if, for any probabilistic polynomial-time adversary, the difference
between the probabilities that b′ = 1 in Game0 and Game1 is negligible with respect to n.

1. Why do we need to assume that the challenge plaintexts are of equal lengths?

Let G∗ be an arbitrary-length PRG. Define Enc(k, M) as follows: Enc(k, M) = G∗(k, 1`)⊕ M, with `
the length of M.

2. Propose a corresponding decryption algorithm Dec. Is this scheme still secure if we use the same
key to encrypt two different messages?

3. Prove that if G∗ is a secure arbitrary-length PRG, then (KeyGen, Enc, Dec) is a one-time CPA-
secure arbitrary-length encryption scheme.

Exercise 4. Increasing the advantage of an attacker.
Let G be a pseudo-random generator from {0, 1}s to {0, 1}n for some integers s and n. Let i ∈
{1, · · · , n} and let A be a PPT algorithm such that, for all k ∈ {0, 1}s, we have

Pr[A(G(k)1···i−1) = G(k)i] ≥
1
2
+ ε,

where the probability runs over the randomness of A. Note that unlike the definition of the advantage
seen in class, here we consider only the probability over the randomness of A and not over the random
choice of k (we will see why later).
Our objective is to construct a new attacker A′ with an advantage arbitrarily close to 1 (for instance
Pr[A(G(k)1···i−1) = G(k)i] ≥ 0.999 for all k ∈ {0, 1}s).

1. Propose a method to improve the success probability of A.

Let m be some integer to be determined. Let A′ be an algorithm that evaluates A on G(k)1···i−1
2m + 1 times, to obtain 2m + 1 bits b1, · · · , b2m+1 and then outputs the bit that appeared the most
(i.e. at least m + 1 times).

2. Give a lower bound on Pr[A′(G(k)1···i−1) = G(k)i], for all k ∈ {0, 1}s. We recall Hoeffding’s
inequality for Bernoulli variables: let X1, · · · , X2m+1 be independent Bernoulli random variables,
with Pr(Xi = 1) = 1− Pr(Xi = 0) = p for all i, and let S = X1 + · · ·+ X2m+1. Then, for all x > 0,
we have

Pr[|S−E(S)| ≥ x
√

2m + 1] ≤ 2e−2x2
.

2

3. What should be the value of m (depending on ε) if we want that Pr[A′(G(k)1···i−1) = G(k)i] ≥
0.999 for all k? It may be useful to know that e−8 ≤ 0.0005.

4. Do we have Advunpredictability(A′) ≥ 0.999 if Pr[A′(G(k)1···i−1) = G(k)i] ≥ 0.999 for all k?

5. What condition on ε do we need to ensure that A′ runs in polynomial time?

Let now A be an attacker such that

Adv(A) = Pr
k←U({0,1}s)

[A(G(k)1···i−1) = G(k)i] ≥
1
2
+ ε.

Note that we are now looking at the definition of advantage given in class, where the probability
also depends on the uniform choice of k. We want to show that in this case, we cannot always
amplify the success probability of the attacker by repeating the computation.

In the following, we write Pr[A(G(k)1···i−1) = G(k)i] when we only consider the probability over
the internal randomness of A (and k is fixed) and Prk←U({0,1}s)[A(G(k)1···i−1) = G(k)i] when we
consider the probability over the choice of k and the internal randomness of A.

Suppose that s ≥ 2 and define

G(k) =
{

00 · · · 0 if k0 = k1 = 0
G0(k) otherwise,

where G0 is a secure PRG from {0, 1}s to {0, 1}n.

6. Show that there exists a PPT attacker A with non negligible advantage (for the unpredictability
definition) against G.

7. Show on the contrary that there is no PPT attacker A with Adv(A) ≥ 7/8 (assuming that G0 is a
secure PRG).

3

	1. Learning with errors is back.
	2. Symmetric encryption scheme from a PRG.
	3. Arbitrary length encryption.
	4. Increasing the advantage of an attacker.

