
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

Tutorial 2: PRGs and one time pad

Exercise 1. Introduction to Computational Hardness Assumptions

Definition 1 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of prime order q, and let
g be a publicly known generator of G. The decisional Diffie-Hellman distribution (DDH) is, DDDH =
(ga, gb, gab) ∈ G3 with a, b sampled independently and uniformly at random in Zq.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that
there exists no probabilistic polynomial-time distinguisher between DDDH and (ga, gb, gc) with a, b, c sampled
independently and uniformly at random in Zq.

1. Does the DDH assumption hold in G = (Zp,+) for p = O(2λ) prime?

2. Same question for G = (Z?
p ,×) of order p− 1.

3. Now we take Zp such that p = 2q + 1 with q prime (also called a safe-prime). Let us work in a
subgroup G of order q in (Z?

p ,×).

(a) Given a generator g of G, propose a construction for a function Ĝ : Zq → G×G (which may
depend on public parameters) such that Ĝ(U(Zq)) is computationally indistinguishable from
U(G×G) based on the DDH assumption on G (where, in Ĝ(U(Zq)), the probability is also
taken over the public parameters of Ĝ).

(b) What is the size of the output of Ĝ given the size of its input?

(c) Why is it not a pseudo-random generator from {0, 1}` to {0, 1}2` for ` = dlg qe?

Exercise 2. Let us go post-quantum!

Definition 3 (Learning with Errors). Let ` < k ∈ N, n < m ∈ N, q = 2k, B = 2`, A ←↩ U(Zm×n
q). The

Learning with Errors (LWE) distribution is defined as follows: DLWE,A = (A, A · s+ e mod q) for s←↩ U(Zn
q)

and e←↩ U
([
− B

2 , B
2 − 1

]m
∩Zm

)
.

Note. In this setting, the vector s is called the secret, and e the noise.
The LWE assumption states that, given suitable parameters k, `, m, n, it is computationally hard to dis-
tinguish DLWE,A from the distribution (A, U(Zm

q)).
Let us propose the following generator: GA(s, e) = A · s + e mod q.

1. Given the binary representation of s, e, compute the bitsize of the input and the output of the
function G with respect to k, `, m, n.

2. Evaluate the cost of a bruteforce attack to retrieve the input s, e in terms of arithmetic operations
in Zq.

3. What happens if B = 0? + This bound can prove useful: ∏n
i=1(1− 2−i) > 0.288.

4. Given the previous question, refine the bruteforce attack of question 2. What does it mean for the
security of the generator G?

5. What happens if ` = k?

6. Given suitable `, k, n, m such that the LWE problem holds in this setting, show that GA is a
pseudo-random generator.

1

Exercise 3. One-time pad is semantically secure.
Let us recall the one-time pad scheme to encrypt a message m ∈ {0, 1}` for ` ∈ N.

Keygen(1`): Outputs k← U({0, 1}`)

Enck(m): Outputs c = m⊕ k

Deck(c): Outputs m′ = c⊕ k

1. Recall the definition of semantic security for a symmetric encryption scheme (for one-time key
and chosen plaintext attack).

2. Prove that one-time pad is semantically secure.

Exercise 4. Sub-bits of a Generator.
Let G : {0, 1}s → {0, 1}n be a pseudo-random generator, S ⊆ [1, n] ∩ Z of size `. Let us define the
function G′ : {0, 1}s → {0, 1}` as x → G(x)|S =

∥∥
i∈SG(x)i, where ‖ denotes the concatenation.

1. Given that G is secure, prove that the distribution defined by the output of G′ on x ← U({0, 1}s)
is indistinguishable from the uniform distribution over {0, 1}`.

Exercise 5. Increasing the expansion factor of a PRG.
We recall that the advantage AdvPRG

A [G] of an algorithm A against a PRG (pseudo-random generator)
G : {0, 1}n → {0, 1}m is the difference of the probabilities that A returns 1 when it is given G(x) ∈
{0, 1}m for x uniformly sampled in {0, 1}n, and when it is given u uniformly sampled in {0, 1}m. We
say that G is a secure PRG if, for any probabilistic polynomial-time A, the advantage of A is negligible
in n, i.e., AdvPRG

A [G] ≤ n−ω(1).

We assume that we have a pseudo-random generator G : {0, 1}n → {0, 1}n+1.

1. Consider G′ : {0, 1}n → {0, 1}n+2 defined as follows. On input x ∈ {0, 1}n, G′ first evaluates G(x)
and obtains (x′, y′) ∈ {0, 1}n × {0, 1} such that G(x) = x′ ‖ y′. It then evaluates G on x′ and
eventually returns G(x′) ‖ y′. Show that if G is a secure PRG, then so is G′.

An arbitrary-length PRG is a function G taking as inputs x ∈ {0, 1}n and ` ≥ 1 in unary, and returning
an element of {0, 1}`. It is said to be secure if for all ` polynomially bounded with respect to n, the
distributions G(U({0, 1}n), 1`) and U({0, 1})` are computationally indistinguishable.

2. Let n ≥ 1. Propose a construction of an arbitrary-length PRG G∗ based on G. Show that if G is a
secure PRG, then so is G∗.

Exercise 6. Increasing the advantage of an attacker.
Let G be a pseudo-random generator from {0, 1}s to {0, 1}n for some integers s and n. Let i ∈
{1, · · · , n} and let A be a PPT algorithm such that, for all k ∈ {0, 1}s, we have

Pr[A(G(k)1···i−1) = G(k)i] ≥
1
2
+ ε,

where the probability runs over the randomness of A. Note that unlike the definition of the advantage
seen in class, here we consider only the probability over the randomness of A and not over the random
choice of k (we will see why later).
Our objective is to construct a new attacker A′ with an advantage arbitrarily close to 1 (for instance
Pr[A(G(k)1···i−1) = G(k)i] ≥ 0.999 for all k ∈ {0, 1}s).

2

1. Propose a method to improve the success probability of A.

Let m be some integer to be determined. Let A′ be an algorithm that evaluates A on G(k)1···i−1
2m + 1 times, to obtain 2m + 1 bits b1, · · · , b2m+1 and then outputs the bit that appeared the most
(i.e. at least m + 1 times).

2. Give a lower bound on Pr[A′(G(k)1···i−1) = G(k)i], for all k ∈ {0, 1}s. We recall Hoeffding’s
inequality for Bernoulli variables: let X1, · · · , X2m+1 be independent Bernoulli random variables,
with Pr(Xi = 1) = 1− Pr(Xi = 0) = p for all i, and let S = X1 + · · ·+ X2m+1. Then, for all x > 0,
we have

Pr[|S−E(S)| ≥ x
√

2m + 1] ≤ 2e−2x2
.

3. What should be the value of m (depending on ε) if we want that Pr[A′(G(k)1···i−1) = G(k)i] ≥
0.999 for all k? It may be useful to know that e−8 ≤ 0.0005.

4. Do we have Advunpredictability(A′) ≥ 0.999 if Pr[A′(G(k)1···i−1) = G(k)i] ≥ 0.999 for all k?

5. What condition on ε do we need to ensure that A′ runs in polynomial time?

Let now A be an attacker such that

Adv(A) = Pr
k←U({0,1}s)

[A(G(k)1···i−1) = G(k)i] ≥
1
2
+ ε.

Note that we are now looking at the definition of advantage given in class, where the probability
also depends on the uniform choice of k. We want to show that in this case, we cannot always
amplify the success probability of the attacker by repeating the computation.

In the following, we write Pr[A(G(k)1···i−1) = G(k)i] when we only consider the probability over
the internal randomness of A (and k is fixed) and Prk←U({0,1}s)[A(G(k)1···i−1) = G(k)i] when we
consider the probability over the choice of k and the internal randomness of A.

Suppose that s ≥ 2 and define

G(k) =
{

00 · · · 0 if k0 = k1 = 0
G0(k) otherwise,

where G0 is a secure PRG from {0, 1}s to {0, 1}n.

6. Show that there exists a PPT attacker A with non negligible advantage (for the unpredictability
definition) against G.

7. Show on the contrary that there is no PPT attacker A with Adv(A) ≥ 7/8 (assuming that G0 is a
secure PRG).

3

	1. Introduction to Computational Hardness Assumptions
	2. Let us go post-quantum!
	3. One-time pad is semantically secure.
	4. Sub-bits of a Generator.
	5. Increasing the expansion factor of a PRG.
	6. Increasing the advantage of an attacker.

