M1 - Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé
TD 1: Play with definitions

Notation. For n > 0, we write Z,, the ring Z/nZ of integers modulo n.

Exercise 1. Distributions and (in)dinstinguishability
We consider two distributions Dy and D; over {0,1}".

1. Recall the definitions that were given in class for the notions of distinguisher and indistinguishability
of Dy and D;.

Now, we consider the following experiment.

C A
sample b < U(0,1)
sample x < D,
send x to A

compute a bit v’
send b’ to C

If b = b/, say “Win”, else say “Lose”.

We say that a PPT algorithm A is a distinguisher if there exists a non-negligible ¢ such that, in this
experiment, Pr[Win] > 1/2 + ¢. The distributions Dy and D, are said to be indistinguishable if there is
no such distinguisher.

2. Show that this definition of indistinguishability is equivalent to the one recalled in the previous
question.

3. A rebellious student decides to define a distinguisher as a PPT algorithm A with Pr[Win] <
1/2 — ¢ in the above experiment (rather than > 1/2 4 ¢). Is this a revolutionary idea?

Exercise 2. Statistical distance

Definition 1 (Statistical distance). Let X and Y be two discrete random variables over a countable set S. The
statistical distance between X and Y is the quantity
1
AX,Y) ==Y |Pr[X =a] — Pr[Y =d|.
aes

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary
symmetric function that satisfies the triangle inequality:

e A(X,Y) > 0, with equality if and only if X and Y are identically distributed,
o AX,Y) =AY, X),
o A(X,Z) < AX,Y)+A(Y,Z).

1. Show that if A(X,Y) = 0, then for any adversary A we have Adv 4(X,Y) = 0.

We also recall the following property: if X and Y are two random variables over a common set A, then
for any (possibly randomized) function f with domain S we have

A(f(X), f(Y)) < DX, Y);
besides, if f is injective then the equality holds.

2. Show that for any adversary A, we have Adv 4(X,Y) < A(X,Y).



3. Assuming the existence of a secure PRG G : {0,1}* — {0,1}", show that A(G(U({0,1}")),
U({0,1}")) can be much larger than max 4 ppr Adv 4(G(U({0,1}°)), U({0,1}")).

Exercise 3. Introduction to Computational Hardness Assumptions

Definition 2 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of prime order q, and let
g be a publicly known generator of G. The decisional Diffie-Hellman distribution (DDH) is, Dppy =
(8% 8", 8") € G3 with a, b sampled independently and uniformly at random in Z.

Definition 3 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that
there exists no probabilistic polynomial-time distinguisher between Dppy and (g°, 8%, g¢) with a,b, c sampled
independently and uniformly at random in Z.

1. Does the DDH assumption hold in G = (Z, +) for p = O(2}) prime?
2. Same question for G = (Zj}, , x) of order p — 1.

3. Now we take Z, such that p = 2q + 1 with g prime (also called a safe-prime). Let us work in a
subgroup G of order g in (Zj , x).

(a) Given a generator g of G, propose a construction for a function G : Zg — G x G (which may
depend on public parameters) such that G(U(Zq)) is computationally indistinguishable from
U(G x G) based on the DDH assumption on G (where, in G(U(Z,)), the probability is also
taken over the public parameters of G).

(b) What is the size of the output of G given the size of its input?

() Why is it not a pseudo-random generator from {0,1}¢ to {0, 1} for ¢ = [Igq]?

Exercise 4. Let us go post-quantum!

Definition 4 (Learning with Errors). Let { <k e NNn <m e N, g = 2k B=2( A « U(ZZ””). The
Learning with Errors (LWE) distribution is defined as follows: Dywg,a = (A, A s+ e mod q) for s <> U(Zy)

andewu({—g,g—l}mﬂzm)

Norte. In this setting, the vector s is called the secret, and e the noise.

The LWE assumption states that, given suitable parameters k, £, m, n, it is computationally hard to dis-
tinguish Dywg,a from the distribution (A, U(ZY')).
Let us propose the following generator: G5 (s,e) = A -s + e mod .

1. Given the binary representation of s, e, compute the bitsize of the input and the output of the
function G with respect to k, £, m, n.

2. Evaluate the cost of a bruteforce attack to retrieve the input s, e in terms of arithmetic operations
in Z,.
q

3. What happens if B = 0? & This bound can prove useful: [T, (1 —27") > 0.288.

4. Given the previous question, refine the bruteforce attack of question 2. What does it mean for the
security of the generator G?

5. What happens if ¢ = k?

6. Given suitable /,k,n,m such that the LWE problem holds in this setting, show that G, is a
pseudo-random generator.
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