## TD 1: Play with definitions

Notation. For $n>0$, we write $\mathbb{Z}_{n}$ the ring $\mathbb{Z} / n \mathbb{Z}$ of integers modulo $n$.

## Exercise 1.

Distributions and (in)dinstinguishability
We consider two distributions $D_{0}$ and $D_{1}$ over $\{0,1\}^{n}$.

1. Recall the definitions that were given in class for the notions of distinguisher and indistinguishability of $D_{0}$ and $D_{1}$.
Now, we consider the following experiment.

| $\mathcal{C}$ | $\mathcal{A}$ |
| :---: | :---: |
| sample $b \hookleftarrow U(0,1)$ |  |
| sample $x \hookleftarrow D_{b}$ |  |
| send $x$ to $\mathcal{A}$ | compute a bit $b^{\prime}$ |
| send $b^{\prime}$ to $\mathcal{C}$ |  |

We say that a PPT algorithm $\mathcal{A}$ is a distinguisher if there exists a non-negligible $\varepsilon$ such that, in this experiment, $\operatorname{Pr}[\operatorname{Win}] \geq 1 / 2+\varepsilon$. The distributions $D_{0}$ and $D_{1}$ are said to be indistinguishable if there is no such distinguisher.
2. Show that this definition of indistinguishability is equivalent to the one recalled in the previous question.
3. A rebellious student decides to define a distinguisher as a PPT algorithm $\mathcal{A}$ with $\operatorname{Pr}[$ Win $] \leq$ $1 / 2-\varepsilon$ in the above experiment (rather than $\geq 1 / 2+\varepsilon$ ). Is this a revolutionary idea?

## Exercise 2.

Statistical distance
Definition 1 (Statistical distance). Let $X$ and $Y$ be two discrete random variables over a countable set $S$. The statistical distance between $X$ and $Y$ is the quantity

$$
\Delta(X, Y)=\frac{1}{2} \sum_{a \in S}|\operatorname{Pr}[X=a]-\operatorname{Pr}[Y=a]|
$$

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary symmetric function that satisfies the triangle inequality:

- $\Delta(X, Y) \geq 0$, with equality if and only if $X$ and $Y$ are identically distributed,
- $\Delta(X, Y)=\Delta(Y, X)$,
- $\Delta(X, Z) \leq \Delta(X, Y)+\Delta(Y, Z)$.

1. Show that if $\Delta(X, Y)=0$, then for any adversary $\mathcal{A}$ we have $\operatorname{Adv}_{\mathcal{A}}(X, Y)=0$.

We also recall the following property: if $X$ and $Y$ are two random variables over a common set $A$, then for any (possibly randomized) function $f$ with domain $S$ we have

$$
\Delta(f(X), f(Y)) \leq \Delta(X, Y)
$$

besides, if $f$ is injective then the equality holds.
2. Show that for any adversary $\mathcal{A}$, we have $\operatorname{Adv}_{\mathcal{A}}(X, Y) \leq \Delta(X, Y)$.
3. Assuming the existence of a secure PRG $G:\{0,1\}^{s} \rightarrow\{0,1\}^{n}$, show that $\Delta\left(G\left(U\left(\{0,1\}^{s}\right)\right)\right.$, $\left.U\left(\{0,1\}^{n}\right)\right)$ can be much larger than $\max _{\mathcal{A} \text { PPT }} \operatorname{Adv}_{\mathcal{A}}\left(G\left(U\left(\{0,1\}^{s}\right)\right), U\left(\{0,1\}^{n}\right)\right)$.

## Exercise 3.

Introduction to Computational Hardness Assumptions
Definition 2 (Decisional Diffie-Hellman distribution). Let $\mathbb{G}$ be a cyclic group of prime order $q$, and let $g$ be a publicly known generator of $\mathbb{G}$. The decisional Diffie-Hellman distribution (DDH) is, $D_{\mathrm{DDH}}=$ $\left(g^{a}, g^{b}, g^{a b}\right) \in \mathbb{G}^{3}$ with $a, b$ sampled independently and uniformly at random in $\mathbb{Z}_{q}$.
Definition 3 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between $D_{\mathrm{DDH}}$ and $\left(g^{a}, g^{b}, g^{c}\right)$ with $a, b, c$ sampled independently and uniformly at random in $\mathbb{Z}_{q}$.

1. Does the DDH assumption hold in $\mathbb{G}=\left(\mathbb{Z}_{p},+\right)$ for $p=\mathcal{O}\left(2^{\lambda}\right)$ prime?
2. $\quad$ Same question for $\mathbb{G}=\left(\mathbb{Z}_{p}^{\star}, \times\right)$ of order $p-1$.
3. Now we take $\mathbb{Z}_{p}$ such that $p=2 q+1$ with $q$ prime (also called a safe-prime). Let us work in a subgroup $\mathbb{G}$ of order $q$ in $\left(\mathbb{Z}_{p}^{\star}, \times\right)$.
(a) Given a generator $g$ of $\mathbb{G}$, propose a construction for a function $\hat{G}: \mathbb{Z}_{q} \rightarrow \mathbb{G} \times \mathbb{G}$ (which may depend on public parameters) such that $\hat{G}\left(U\left(\mathbb{Z}_{q}\right)\right)$ is computationally indistinguishable from $U(\mathbb{G} \times \mathbb{G})$ based on the DDH assumption on $\mathbb{G}$ (where, in $\hat{G}\left(U\left(\mathbb{Z}_{q}\right)\right)$, the probability is also taken over the public parameters of $\hat{G})$.
(b) What is the size of the output of $\hat{G}$ given the size of its input?
(c) Why is it not a pseudo-random generator from $\{0,1\}^{\ell}$ to $\{0,1\}^{2 \ell}$ for $\ell=\lceil\lg q\rceil$ ?

## Exercise 4.

Definition 4 (Learning with Errors). Let $\ell<k \in \mathbb{N}, n<m \in \mathbb{N}, q=2^{k}, B=2^{\ell}, \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\mathrm{LWE}, \mathbf{A}}=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $\mathbf{e} \hookleftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}-1\right]^{m} \cap \mathbb{Z}^{m}\right)$.

Note. In this setting, the vector $\mathbf{s}$ is called the secret, and $\mathbf{e}$ the noise.
The LWE assumption states that, given suitable parameters $k, \ell, m, n$, it is computationally hard to distinguish $D_{\text {LWE,A }}$ from the distribution $\left(\mathbf{A}, U\left(\mathbb{Z}_{q}^{m}\right)\right)$.
Let us propose the following generator: $G_{\mathbf{A}}(\mathbf{s}, \mathbf{e})=\mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q$.

1. Given the binary representation of $\mathbf{s}, \mathbf{e}$, compute the bitsize of the input and the output of the function $G$ with respect to $k, \ell, m, n$.
2. Evaluate the cost of a bruteforce attack to retrieve the input $\mathbf{s}, \mathbf{e}$ in terms of arithmetic operations in $\mathbb{Z}_{q}$.
3. What happens if $B=0$ ? This bound can prove useful: $\prod_{i=1}^{n}\left(1-2^{-i}\right)>0.288$.
4. Given the previous question, refine the bruteforce attack of question 2 . What does it mean for the security of the generator $G$ ?
5. What happens if $\ell=k$ ?
6. Given suitable $\ell, k, n, m$ such that the LWE problem holds in this setting, show that $G_{\mathbf{A}}$ is a pseudo-random generator.
