
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

TD 1: Play with definitions

Notation. For n > 0, we write Zn the ring Z/nZ of integers modulo n.

Exercise 1. Distributions and (in)dinstinguishability
We consider two distributions D0 and D1 over {0, 1}n.

1. Recall the definitions that were given in class for the notions of distinguisher and indistinguishability
of D0 and D1.

Now, we consider the following experiment.

C A
sample b←↩ U(0, 1)

sample x ←↩ Db
send x to A

compute a bit b′

send b′ to C
If b = b′, say “Win”, else say “Lose”.

We say that a PPT algorithm A is a distinguisher if there exists a non-negligible ε such that, in this
experiment, Pr[Win] ≥ 1/2 + ε. The distributions D0 and D1 are said to be indistinguishable if there is
no such distinguisher.

2. Show that this definition of indistinguishability is equivalent to the one recalled in the previous
question.

3. A rebellious student decides to define a distinguisher as a PPT algorithm A with Pr[Win] ≤
1/2− ε in the above experiment (rather than ≥ 1/2 + ε). Is this a revolutionary idea?

Exercise 2. Statistical distance

Definition 1 (Statistical distance). Let X and Y be two discrete random variables over a countable set S. The
statistical distance between X and Y is the quantity

∆(X, Y) =
1
2 ∑

a∈S
|Pr[X = a]− Pr[Y = a]|.

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary
symmetric function that satisfies the triangle inequality:

• ∆(X, Y) ≥ 0, with equality if and only if X and Y are identically distributed,

• ∆(X, Y) = ∆(Y, X),

• ∆(X, Z) ≤ ∆(X, Y) + ∆(Y, Z).

1. Show that if ∆(X, Y) = 0, then for any adversary A we have AdvA(X, Y) = 0.

We also recall the following property: if X and Y are two random variables over a common set A, then
for any (possibly randomized) function f with domain S we have

∆( f (X), f (Y)) ≤ ∆(X, Y);

besides, if f is injective then the equality holds.

2. Show that for any adversary A, we have AdvA(X, Y) ≤ ∆(X, Y).
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3. Assuming the existence of a secure PRG G : {0, 1}s → {0, 1}n, show that ∆(G(U({0, 1}s)),
U({0, 1}n)) can be much larger than maxA PPT AdvA(G(U({0, 1}s)), U({0, 1}n)).

Exercise 3. Introduction to Computational Hardness Assumptions

Definition 2 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of prime order q, and let
g be a publicly known generator of G. The decisional Diffie-Hellman distribution (DDH) is, DDDH =
(ga, gb, gab) ∈ G3 with a, b sampled independently and uniformly at random in Zq.

Definition 3 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that
there exists no probabilistic polynomial-time distinguisher between DDDH and (ga, gb, gc) with a, b, c sampled
independently and uniformly at random in Zq.

1. Does the DDH assumption hold in G = (Zp,+) for p = O(2λ) prime?

2. Same question for G = (Z?
p ,×) of order p− 1.

3. Now we take Zp such that p = 2q + 1 with q prime (also called a safe-prime). Let us work in a
subgroup G of order q in (Z?

p ,×).

(a) Given a generator g of G, propose a construction for a function Ĝ : Zq → G×G (which may
depend on public parameters) such that Ĝ(U(Zq)) is computationally indistinguishable from
U(G×G) based on the DDH assumption on G (where, in Ĝ(U(Zq)), the probability is also
taken over the public parameters of Ĝ).

(b) What is the size of the output of Ĝ given the size of its input?

(c) Why is it not a pseudo-random generator from {0, 1}` to {0, 1}2` for ` = dlg qe?

Exercise 4. Let us go post-quantum!

Definition 4 (Learning with Errors). Let ` < k ∈ N, n < m ∈ N, q = 2k, B = 2`, A ←↩ U(Zm×n
q ). The

Learning with Errors (LWE) distribution is defined as follows: DLWE,A = (A, A · s+ e mod q) for s←↩ U(Zn
q )

and e←↩ U
([
− B

2 , B
2 − 1

]m
∩Zm

)
.

Note. In this setting, the vector s is called the secret, and e the noise.
The LWE assumption states that, given suitable parameters k, `, m, n, it is computationally hard to dis-
tinguish DLWE,A from the distribution (A, U(Zm

q )).
Let us propose the following generator: GA(s, e) = A · s + e mod q.

1. Given the binary representation of s, e, compute the bitsize of the input and the output of the
function G with respect to k, `, m, n.

2. Evaluate the cost of a bruteforce attack to retrieve the input s, e in terms of arithmetic operations
in Zq.

3. What happens if B = 0? + This bound can prove useful: ∏n
i=1(1− 2−i) > 0.288.

4. Given the previous question, refine the bruteforce attack of question 2. What does it mean for the
security of the generator G?

5. What happens if ` = k?

6. Given suitable `, k, n, m such that the LWE problem holds in this setting, show that GA is a
pseudo-random generator.
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