TD 1: Play with definitions

Notation. For n > 0, we write \mathbb{Z}_n the ring $\mathbb{Z}/n\mathbb{Z}$ of integers modulo n.

Exercise 1.

We consider two distributions D_0 and D_1 over $\{0,1\}^n$.

1. Recall the definitions that were given in class for the notions of *distinguisher* and *indistinguishability* of D_0 and D_1 .

Now, we consider the following experiment.

 \mathcal{C} \mathcal{A} sample $b \leftrightarrow U(0,1)$
sample $x \leftrightarrow D_b$
send x to \mathcal{A} compute a bit b'
send b' to \mathcal{C} If b = b', say "Win", else say "Lose".

We say that a PPT algorithm A is a *distinguisher* if there exists a non-negligible ε such that, in this experiment, $\Pr[Win] \ge 1/2 + \varepsilon$. The distributions D_0 and D_1 are said to be *indistinguishable* if there is no such distinguisher.

- **2.** Show that this definition of indistinguishability is equivalent to the one recalled in the previous question.
- 3. A rebellious student decides to define a distinguisher as a PPT algorithm \mathcal{A} with $\Pr[\text{Win}] \leq 1/2 \varepsilon$ in the above experiment (rather than $\geq 1/2 + \varepsilon$). Is this a revolutionary idea?

Exercise 2.

Definition 1 (Statistical distance). *Let X and Y be two discrete random variables over a countable set S. The statistical distance between X and Y is the quantity*

$$\Delta(X,Y) = \frac{1}{2} \sum_{a \in S} |\Pr[X=a] - \Pr[Y=a]|.$$

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary symmetric function that satisfies the triangle inequality:

- $\Delta(X, Y) \ge 0$, with equality if and only if *X* and *Y* are identically distributed,
- $\Delta(X,Y) = \Delta(Y,X)$,
- $\Delta(X,Z) \leq \Delta(X,Y) + \Delta(Y,Z).$

1. Show that if $\Delta(X, Y) = 0$, then for any adversary \mathcal{A} we have $\operatorname{Adv}_{\mathcal{A}}(X, Y) = 0$.

We also recall the following property: if X and Y are two random variables over a common set A, then for any (possibly randomized) function f with domain S we have

$$\Delta(f(X), f(Y)) \le \Delta(X, Y);$$

besides, if f is injective then the equality holds.

2. Show that for any adversary \mathcal{A} , we have $\operatorname{Adv}_{\mathcal{A}}(X, Y) \leq \Delta(X, Y)$.

Statistical distance

Distributions and (in)dinstinguishability

3. Assuming the existence of a secure PRG $G : \{0,1\}^s \to \{0,1\}^n$, show that $\Delta(G(U(\{0,1\}^s)), U(\{0,1\}^n))$ can be much larger than $\max_{\mathcal{A} \text{ PPT}} \operatorname{Adv}_{\mathcal{A}}(G(U(\{0,1\}^s)), U(\{0,1\}^n))$.

Exercise 3.

Introduction to Computational Hardness Assumptions

Definition 2 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of prime order q, and let g be a publicly known generator of \mathbb{G} . The decisional Diffie-Hellman distribution (DDH) is, $D_{\text{DDH}} = (g^a, g^b, g^{ab}) \in \mathbb{G}^3$ with a, b sampled independently and uniformly at random in \mathbb{Z}_q .

Definition 3 (Decisional Diffie-Hellman assumption). *The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between* D_{DDH} *and* (g^a, g^b, g^c) *with a, b, c sampled independently and uniformly at random in* \mathbb{Z}_q .

- **1.** Does the DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p, +)$ for $p = \mathcal{O}(2^{\lambda})$ prime?
- **2.** Same question for $\mathbb{G} = (\mathbb{Z}_p^*, \times)$ of order p 1.
- 3. Now we take Z_p such that p = 2q + 1 with q prime (also called a *safe-prime*). Let us work in a subgroup G of order q in (Z^{*}_p, ×).
 - (a) Given a generator g of G, propose a construction for a function Ĝ: Z_q → G × G (which may depend on public parameters) such that Ĝ(U(Z_q)) is computationally indistinguishable from U(G × G) based on the DDH assumption on G (where, in Ĝ(U(Z_q)), the probability is also taken over the public parameters of Ĝ).
 - (b) What is the size of the output of \hat{G} given the size of its input?
 - (c) Why is it not a pseudo-random generator from $\{0,1\}^{\ell}$ to $\{0,1\}^{2\ell}$ for $\ell = \lceil \lg q \rceil$?

Exercise 4.

Let us go post-quantum!

Definition 4 (Learning with Errors). Let $\ell < k \in \mathbb{N}$, $n < m \in \mathbb{N}$, $q = 2^k$, $B = 2^\ell$, $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text{LWE},\mathbf{A}} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2} - 1\right]^m \cap \mathbb{Z}^m\right)$.

NOTE. In this setting, the vector **s** is called the secret, and **e** the noise.

The *LWE assumption* states that, given suitable parameters k, ℓ, m, n , it is computationally hard to distinguish $D_{\text{LWE},\mathbf{A}}$ from the distribution $(\mathbf{A}, U(\mathbb{Z}_q^m))$.

Let us propose the following generator: $G_{\mathbf{A}}(\mathbf{s}, \mathbf{e}) = \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q$.

- **1.** Given the binary representation of **s**, **e**, compute the bitsize of the input and the output of the function *G* with respect to *k*, ℓ, *m*, *n*.
- Evaluate the cost of a bruteforce attack to retrieve the input s, e in terms of arithmetic operations in Z_q.
- 3. What happens if B = 0? \square This bound can prove useful: $\prod_{i=1}^{n} (1 2^{-i}) > 0.288$.
- **4.** Given the previous question, refine the bruteforce attack of question 2. What does it mean for the security of the generator *G*?
- 5. What happens if $\ell = k$?
- **6.** Given suitable ℓ, k, n, m such that the LWE problem holds in this setting, show that G_A is a pseudo-random generator.