
M1 – Cryptology and Security (2017/2018) A. Pellet--Mary and D. Stehlé

Homework 1 (Due February 27, 2018)

This assignment is to be returned on February 27, 2018, during tutorial. Answers may be type-
written or in legible writing in English or French, to your convenience. The quality, precision and
concision of the arguments will play an important role in the overall grading process.

Exercise 1. Building a PRF from a PRG
Let n ∈ N be a security parameter. Let G : {0, 1}n → {0, 1}2n denote a length-doubling Pseudo-
Random Generator (PRG). We define G0 : {0, 1}n → {0, 1}n and G1 : {0, 1}n → {0, 1}n as the functions
that evaluate G and keep the n left-most bits and n right-most bits, respectively.
We consider the following keyed function

F : {0, 1}n × {0, 1}n → {0, 1}n

k , x 7→ Gxn(Gxn−1(. . . (Gx1(k)) . . .)),

where x = x1 . . . xn−1xn. Our aim is to show that F is a Pseudo-Random Function (PRF).

1. Recall the security definition of a PRF and the advantage of a PRF adversary.

We now consider n + 1 functions defined as follows, for i ∈ {0, . . . , n− 1}:

Fi : {0, 1}n × {0, 1}n → {0, 1}n

k , x 7→ Gxn(Gxn−1(. . . (Gxi+1(uxixi−1 ...x1)) . . .)),

where each uxixi−1 ...x1 is chosen uniformly and independently in {0, 1}n, and fixed once and for
all (it is hardwired in the definition of Fi). For i = 0, we define uε = k. For i = n − 1, we
let Fn : {0, 1}n × {0, 1}n → {0, 1}n be a uniformly sampled function.

2. Show that if there is a PRF adversary A against F, then A distinguishes between an oracle access
to Fi and an oracle access to Fi+1, for some i ∈ {0, . . . , n− 1}.
For t ≥ 1, we consider the function

Gt : ({0, 1}n)t → ({0, 1}2n)t

(k1, . . . , kt) 7→ (G(k1), . . . , G(kt)).

3. Show that any PRG adversary Bt against Gt leads to a PRG adversary against G.

Let i and A be as above. Let t denote the run-time of A. We are going to show that A may be
used to mount an attack against Gt. We consider the following algorithm Bt.

• It takes as input a string (y1,0, y1,1, y2,0, y2,1, . . . , yt,0, yt,1) ∈ ({0, 1}2n)t.

• It maintains a list L of triples that is initially empty.

• It interacts with Algorithm A.

• Each time A makes a function query x1 . . . xn, it checks whether x1 . . . xi = x′1 . . . x′i for a
previously queried input x′1 . . . x′n.

? If this is not the case, then it computes the length j of L, and it adds (x1 . . . xi, yj+1,0, yj+1,1)
to the list L.

? Else, it finds the triple (x1 . . . xi, yj+1,0, yj+1,1) in L.
? In both cases, it replies Gxn(. . . Gxi+2(yj+1,0) . . .) if xi+1 = 0 and Gxn(. . . Gxi+2(yj+1,1) . . .)

if xi+1 = 1. If i = n− 1, it replies yj+1,0 if xn = 0 and yj+1,1 if xn = 1.

• Eventually, Algorithm A outputs a bit b ∈ {0, 1}, which Bt forwards as its own output.
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4. Show that if the yj,β’s are uniformly and independently random, then the view of A is exactly
the same as if it were given oracle access to Fi+1.

5. Show that if the yj,0yj,1 = G(k j) for all j ≤ t and for uniformly and independently random k j’s,
then the view of A is exactly the same as if it were given oracle access to Fi.

6. Conclude. In particular, give bounds on the run-time and advantage of the adversary against
PRG G as functions of the run-time and advantage of the adversary against PRF F.

Exercise 2. Pseudo-random functions from the DDH assumption
Let n ∈ N be a security parameter. Let G be a cyclic group of prime order q > 2n which is generated
by g ∈ G and for which DDH is presumably hard.

For a public g ∈ G, we define the function FK : {0, 1}n → G which is keyed by a random vector
K = (a0, a1, . . . , nn) ∈ U(Zn+1

q ) and takes as input a bitstring x = x1 . . . xn ∈ {0, 1}n to output

FK(x) = ga0·∏n
j=1 a

xj
j . (1)

Our goal is to prove that the function FK : {0, 1}n → G is a pseudo-random function under the DDH
assumption in G.

For an index i ∈ {1, . . . , n}, we consider an experiment where the adversary is given oracle access to a
hybrid function F(i)

K : {0, 1}n → G defined as

F(i)
K (x) = gR(x[1...i])·∏n

j=i+1 a
xj
j ,

where R : {0, 1}i → Zq is a truly random function and x[1 . . . i] = x1 . . . xi ∈ {0, 1}i denotes the i-th
prefix of the input x ∈ {0, 1}n.

1. Prove that F(0)
K (x) coincides with the function FK(·) of (1) if we define the length-0 prefix of

x ∈ {0, 1}n to be the empty string ε and R(ε) to be a non-zero constant. How does the function
F(n)

K (x) behave in the adversary’s view?

2. Let (ga, gb, gc) be a DDH instance, where a, b ← U(Zq), and we have to decide if c = ab or if
c← U(Zq). Describe a probabilistic polynomial-time algorithm that creates Q randomized DDH
instances

{(ga, gbk , gck )}Q
k=1,

where {bk}Q
k=1 are random and independent over Zq, with the properties that

- If c = ab, then ck = abk for each k ∈ {1, . . . , Q}.

- If c← U(Zq), then {ck}Q
k=1 are independent and uniformly distributed over Zq.

3. For each i ∈ {0, . . . , n}, we define the experiment Expi where the adversary A is given oracle

access to the function F(i)
K (x) and eventually outputs a bit b′ ∈ {0, 1} after Q evaluation queries.

Prove that, for each i ∈ {0, . . . , n− 1}, experiment Expi is computationally indistinguishable from
Expi+1 under the DDH assumption in G. Namely, prove that A outputs b′ = 1 with about the
same probabilities in Expi and Expi+1 unless the DDH assumption is false.

4. Give an upper bound on the advantage of a PRF distinguisher as a function of the maximal
advantage of a DDH distinguisher.
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