Tutorial 9

1 Binary splitting on the arctangent series

We aim at computing, with N bits of accuracy (i.e., with error less than 2^{-N}),

$$
\begin{equation*}
\arctan \left(\frac{1}{q}\right)=\frac{1}{q}-\frac{1}{3 q^{3}}+\frac{1}{5 q^{5}}-\cdots=\sum_{k \geqslant 0} \frac{(-1)^{k}}{(2 k+1) \cdot q^{2 k+1}} . \tag{1}
\end{equation*}
$$

We assume that $q>0$ is a "small" integer (so that its size can be considered constant in a complexity analysis), and $M(p)$ is the time required to multiply two p-bit numbers.

1. Define, for $a<b$,

$$
\begin{aligned}
& R(a, b)=(2 a+3)(2 a+5)(2 a+7) \cdots(2 b+1), \\
& Q(a, b)=(2 a+3)(2 a+5)(2 a+7) \cdots(2 b+1) \cdot q^{2(b-a)},
\end{aligned}
$$

and

$$
P(a, b)=(-1)^{a+1} \frac{R(a, b)}{2 a+3} q^{2(b-a-1)}+(-1)^{a+2} \frac{R(a, b)}{2 a+5} q^{2(b-a-2)}+\cdots+(-1)^{b} \frac{R(a, b)}{2 b+1} q^{0} .
$$

Show that the sum of the first $K+1$ terms of the series (1) is equal to

$$
\frac{1}{q} \cdot\left(1+\frac{P(0, K)}{Q(0, K)}\right) .
$$

2. We obviously have $R(a, b)=R(a, m) \cdot R(m, b)$ and $Q(a, b)=Q(a, m) \cdot Q(m, b)$. Express $P(a, b)$ as a function of $P(a, m), R(a, m), P(m, b)$, and $Q(m, b)$.
3. Show that the sizes (in number of bits) of the integers $Q(0, K)$ and $R(0, K)$ are $O(K \log K)$. What can be said about the size of $P(0, K)$?
4. Give a quasi-linear time algorithm to compute $P(0, K)$ and $Q(0, K)$.
5. Deduce the time required to evaluate the series 11 with error less that 2^{-N} - you may have to treat the case $q=1$ separately.

2 Directly computing binary or hexadecimal digits of π

Plouffe's Formula (or the BBP formula ${ }^{11}$) for π is the following:

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left[\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right] . \tag{2}
\end{equation*}
$$

[^0]The objective of this exercise is to use (2) for directly computing the zillionth hexadecimal digit of π, without having to compute the previous ones. In the following, $\{u\}$ is the fractional part of u (i.e. $\{u\}=u-\lfloor u\rfloor$), and for $j=1,4,5,6$, we define

$$
S_{j}=\sum_{k=0}^{\infty} \frac{1}{16^{k}(8 k+j)}
$$

We (almost) straightforwardly have:

$$
\left\{16^{d} \pi\right\}=\left\{4\left\{16^{d} S_{1}\right\}-2\left\{16^{d} S_{4}\right\}-\left\{16^{d} S_{5}\right\}-\left\{16^{d} S_{6}\right\}\right\} .
$$

1. We wish to evaluate, with error less than 16^{-p} (p is a small integer), the number

$$
\left\{16^{d} S_{j}\right\}=\left\{\left\{\sum_{k=0}^{d} \frac{16^{d-k}}{8 k+j}\right\}+\sum_{k=d+1}^{\infty} \frac{16^{d-k}}{8 k+j}\right\},
$$

suggest an algorithm for that.
2. Give an algorithm that returns the $(d+1)$-th hexadecimal digit of π.
3. Give a rough complexity analysis.

3 Plouffe's Formula for π (or BBP formula in English)

In this exercise, we prove Plouffe's formula (2), used in the previous exercise.

1. Let $k \in \mathbb{N}, k \geq 1$. Show that

$$
\int_{0}^{1 / \sqrt{2}} \frac{x^{k-1}}{1-x^{8}} d x=\frac{1}{\sqrt{2}^{k}} \sum_{i=0}^{\infty} \frac{1}{16^{i}(8 i+k)}
$$

2. Consider the following sum:

$$
\mathcal{S}=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left[\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right]
$$

Show that

$$
\mathcal{S}=\int_{0}^{1 / \sqrt{2}} \frac{4 \sqrt{2}-8 x^{3}-4 \sqrt{2} x^{4}-8 x^{5}}{1-x^{8}} d x
$$

and deduce that

$$
\mathcal{S}=\int_{0}^{1} \frac{16 y-16}{y^{4}-2 y^{3}+4 y-4} d y
$$

3. Show that $\mathcal{S}=\pi$, which gives Plouffe's formula:

$$
\begin{equation*}
\pi=\sum_{i=0}^{\infty} \frac{1}{16^{i}}\left[\frac{4}{8 i+1}-\frac{2}{8 i+4}-\frac{1}{8 i+5}-\frac{1}{8 i+6}\right] \tag{3}
\end{equation*}
$$

[^0]: ${ }^{1}$ Plouffe is from Quebec while Bailey and Borwein are American and Canadian. This may explain why the French community only kept the name of Plouffe...

