Tutorial 8

1 Wiedemann's algorithm

Let K be a field and $M \in M_{n}(K)$ be an invertible matrix, with $\omega(M)$ non zero coefficients.

1. Recall the main steps of Wiedemann's algorithm to compute a solution of $M x=b$ for some vector b. What is its complexity?
2. Assume now that M is non invertible. Can you modify Wiedemann's algorithm to find a non zero element in the kernel of M ? What complexity do you obtain ?

2 Iterative methods for solving linear systems

In this exercise, we let that $K=\mathbb{R}$ or $K=\mathbb{C}$. We will consider iterative methods to compute an approximation of the solution of a system

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

with A an invertible matrix of size n.

1. Let $A=M-N$ with $M, N \in M_{n}(K)$ and M invertible. Show that solving (1) is equivalent to find a fixed point of the function $f: K^{n} \rightarrow K^{n}$ defined by $f(x)=M^{-1} N x+M^{-1} b$.
In the following two questions, we prove Banach fixed point theorem (ou théorème du point fixe de Picard). This theorem states that under some conditions on a function f, this function has a unique fixed point in K^{n}. Let $g: K^{n} \rightarrow K^{n}$ be a contraction mapping, that is for all $x, y \in K^{n}$, we have $\|g(x)-g(y)\| \leq k\|x-y\|$ for some $k<1$.
2. Prove that g has at most one fixed point ℓ in K^{n}.
3. Let $x_{0} \in K^{n}$ be any vector and define $x_{n+1}=g\left(x_{n}\right)$. Prove that this sequence converges. What is its limit? What is the speed of convergence of this sequence ? (Hint: you may want to use a compacity argument: recall that in \mathbb{C}^{n} or in \mathbb{R}^{n}, from any bounded sequence you can extract a sub-sequence that converges).
Let $M \in M_{n}(K)$ be a matrix (with $K=\mathbb{C}$ or $K=\mathbb{R}$). Let $\|$.$\| be a norm over K^{n}$ (for instance $\|.\|_{2}$ or $\|\cdot\|_{\infty}$). We define the matrix norm of M associated to $\|\cdot\|$ by

$$
\mid\|M\| \|=\sup _{x \in K^{n} \backslash\{0\}}\left(\frac{\|M x\|}{\|x\|}\right) .
$$

4. Prove that $\left|\left||M| \|=\max _{x \in K^{n},\|x\|=1}(\|M x\|)\right.\right.$ (beware, there is now a max and not a sup). (Hint: use the fact that the unit ball is compact in K^{n}).
5. Let f be as in question 1, give a condition on M and N such that we can can apply Banach fixed point theorem to it.

In the following, we write $A=D-E-F$ with D the diagonal part of A (D is a diagonal matrix with the same coefficients as on the diagonal of A), $-E$ is the lower triangular part of A with zeros on the diagonal and $-F$ is the upper triangular part of A with zeros on the diagonal.
6. Jacobi's method. Assume A has non zero diagonal elements. Let $M=D-E$ and $N=F$ and assume that the condition of question 5 is satisfied. Give an algorithm to compute an approximation of x such that $A x=b$ with at least r bits of precision for each coordinate. What is its complexity in terms of operations in K (assume we already know a ball of radius 10 containing x)?
7. Let A be a strictly row diagonally dominant matrix, that is $\left|a_{i, i}\right|>\sum_{j \neq i}\left|a_{i, j}\right|$ for all $1 \leq i \leq n$. Prove that the Jacobi's method converges for A (Hint : use the $\|\cdot\|_{\infty}$ norm to prove that the condition of question 5 is satisfied).

3 Hensel-type strategy for solving linear system

In this exercise, we study algorithms to solve $M x=b, M \in \mathcal{M}_{n}(K[X]), b \in K[X]^{n}$. We shall assume that the degree of all coordinates of M, b is $\leqslant d$.

Cramer's formulas show that if x is a solution of $M x=b,(\operatorname{det} M) \cdot x \in K[X]^{n}$, and the coefficients of $(\operatorname{det} M) \cdot x$ have degree $\leqslant n d$. We'll also assume that $\operatorname{det} M(u) \neq 0$ for all $u \in K$.

1. What is the complexity of computing $B:=(M \bmod X)^{-1}$?

Let $y_{i} \in K[X]^{n}$ be a solution of $M y_{i}=b \bmod X^{i}$, and define $r_{i}=b-M y_{i}$.
2. Prove that $r_{i}=\lambda_{i} X^{i}$ for some $\lambda_{i} \in K[X]^{n}$. If $z_{i}=B \lambda_{i} \bmod X$, prove that $y_{i+1}=y_{i}+X^{i} z_{i}$ and $r_{i+1}=r_{i}-X^{i} M z_{i}$.
3. What is the complexity of computing $y_{n d+1}$ using this method? Assuming that $\operatorname{det} M$ is given as input or precomputed, deduce an algorithm for solving $M x=b$.
4. If we need to compute det M beforehand, then this computation is going to dominate the complexity of linear system solving. Can we avoid computing the determinant? (Hint: use rational reconstruction.)

