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1

Wiedemann’s algorithm

Let K be a field and M € M,,(K) be an invertible matrix, with w(M ) non zero coefficients.

1. Recall the main steps of Wiedemann’s algorithm to compute a solution of Mz = b for some vector b.
What is its complexity ?
2. Assume now that M is non invertible. Can you modify Wiedemann’s algorithm to find a non zero
element in the kernel of M ? What complexity do you obtain ?
2 Iterative methods for solving linear systems
In this exercise, we let that K = R or K = C. We will consider iterative methods to compute an

approximation of the solution of a system

Az =b ey

with A an invertible matrix of size n.

1.

Let A= M — N with M, N € M, (K) and M invertible. Show that solving (I) is equivalent to find a
fixed point of the function f : K™ — K™ defined by f(x) = M~'Nx + M~!b.

In the following two questions, we prove Banach fixed point theorem (ou théoréme du point fixe de
Picard). This theorem states that under some conditions on a function f, this function has a unique
fixed point in K". Let g : K™ — K™ be a contraction mapping, that is for all x,y € K", we have
lg(x) — 9(y)ll < Kllz —y|| for some k < 1.

Prove that g has at most one fixed point £ in K.

. Let zp € K™ be any vector and define x,,11 = g(x,). Prove that this sequence converges. What is its

limit ? What is the speed of convergence of this sequence ? (Hint: you may want to use a compacity
argument: recall that in C" or in R”, from any bounded sequence you can extract a sub-sequence that
converges).

Let M € M, (K) be a matrix (with K = C or K = R). Let ||.|| be a norm over K" (for instance ||.||2
or ||.]lso)- We define the matrix norm of M associated to ||.|| by

Mzx
Ml = sup (‘ ”).
zexm\{oy \ 11zl

. Prove that ||| M||| = max,egn |o|=1 ([ Mz]]) (beware, there is now a max and not a sup). (Hint: use

the fact that the unit ball is compact in K").



5. Let f be as in question |l give a condition on M and N such that we can can apply Banach fixed point
theorem to it.

In the following, we write A = D — E — F' with D the diagonal part of A (D is a diagonal matrix with
the same coefficients as on the diagonal of A), —F is the lower triangular part of A with zeros on the
diagonal and — F' is the upper triangular part of A with zeros on the diagonal.

6. Jacobi’s method. Assume A has non zero diagonal elements. Let M = D — E and N = F' and assume
that the condition of question [3]is satisfied. Give an algorithm to compute an approximation of = such
that Ax = b with at least r bits of precision for each coordinate. What is its complexity in terms of
operations in K (assume we already know a ball of radius 10 containing x)?

7. Let A be a strictly row diagonally dominant matrix, that is [a;;| > 3, ; |a; ;| forall 1 <4 < n. Prove
that the Jacobi’s method converges for A (Hint : use the || - ||o norm to prove that the condition of
question [3]is satisfied).

3 Hensel-type strategy for solving linear system

In this exercise, we study algorithms to solve Mz = b, M € M, (K[X]),b € K[X]". We shall assume that
the degree of all coordinates of M, b is < d.

Cramer’s formulas show that if x is a solution of Mx = b, (det M) - x € K|[X|", and the coefficients
of (det M) - x have degree < nd. We’ll also assume that det M (u) # 0 for all u € K.

1. What is the complexity of computing B := (M mod X)~1?
Let y; € K[X]™ be a solution of My; = b mod X', and define r; = b — My;.

2. Prove that r; = \; X? for some \; € K[X]". If z; = B\; mod X, prove that y; 1 = y; + X’2; and
Tiv1 =T — XiMZZ'.

3. What is the complexity of computing ¥,4+1 using this method? Assuming that det M is given as input
or precomputed, deduce an algorithm for solving Mx = b.

4. If we need to compute det M beforehand, then this computation is going to dominate the complexity of
linear system solving. Can we avoid computing the determinant? (Hint: use rational reconstruction.)
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