Tutorial 7

1 Déjà vu

In this exercise, $x_{1}, x_{2}, \ldots, x_{n}$ are elements of K and P, Q are polynomials in $K[X]$ of degree $<n$.

1. Let $h(X)=\prod_{j=1}^{n}\left(X-x_{j}\right)$. Give a quasi-linear algorithm for computing $P \circ Q \bmod h$.
2. When h is an arbitrary polynomial of degree n, what is the best complexity you can achieve for computing $P \circ Q \bmod h$?

2 Fast characteristic polynomial

Let A be an $n \times n$ matrix. In this exercise, we will denote by n^{ω} the number of operations in K needed to multiply two n by n matrices with coefficients in K. You will see in class that given a n by n matrix $M \in \mathcal{M}_{n}(K)$, we can compute M^{-1} using $O\left(n^{\omega}\right)$ operations in K (computing the inverse is asymptotically the same as multiplying).

1. Assume that v is a vector such that $v, A v, A^{2} v, \ldots, A^{n-1} v$ is a basis of K^{n}; then if B is the matrix with columns $v, A v, A^{2} v, \ldots, A^{n-1} v$, prove that $B^{-1} A B$ is a companion matrix, that is, a matrix of the following form.

$$
C=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & c_{0} \\
1 & 0 & \cdots & 0 & c_{1} \\
0 & 1 & \cdots & 0 & c_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & c_{n-1}
\end{array}\right]
$$

2. If B is given, what is the cost of computing the characteristic polynomial of A using the previous question.
3. Explain why from an $n \times n$ matrix multiplication in time $O\left(n^{\omega}\right)$ we can deduce a $n \times m$ by $m \times k$ matrix multiplication algorithm in time $O\left(\max (n, m, k)^{\omega}\right)$
4. Define $w_{0}=v, w_{1}=(v, A v), w_{2}=\left(v, A v, A^{2} v, A^{3} v\right), \ldots, w_{k}=\left(v, A v, A^{2} v, \ldots, A^{2^{k}-1} v\right)$

Prove that w_{k} can be computed in time $O\left(k n^{\omega}\right)$ for $k<\log n$.
5. Under the assumption that v exists and that you know it, give a $O\left(n^{\omega} \log n\right)$ algorithm for computing the characteristic polynomial of a square matrix.
6. Does there always exist a v as in question 1?

Remark. A good final (but purely mathematical) question is to show that on the other hand, if the characteristic polynomial of A is irreducible, any nonzero v works.

3 Sylvester matrices

Let K be a field, and $P=\sum_{i=0}^{d_{P}} p_{i} X^{i}, Q=\sum_{i=0}^{d_{Q}} q_{i} X^{i}$ be two polynomials in $K[X]$ of respective degree d_{P} and d_{Q}. Put $D=d_{P}+d_{Q}$, define $v_{P}=\left(p_{0}, p_{1}, \ldots, p_{d_{P}}, 0, \ldots, 0\right) \in K^{D}$ and $v_{Q}=$ $\left(q_{0}, q_{1}, \ldots, q_{d_{Q}}, 0, \ldots, 0\right) \in K^{D}$.

For $x=\left(x_{0}, \ldots, x_{D-1}\right)$ a vector in K^{D}, define $C(x)=\left(0, x_{0}, \ldots, x_{D-2}\right)$. The Sylvester matrix of P and Q is the matrix of size D whose colums are

$$
\left(v_{P}, C\left(v_{P}\right), \ldots, C^{d_{Q}-1}\left(v_{P}\right), v_{Q}, C\left(v_{Q}\right), \ldots, C^{d_{P}-1}\left(v_{Q}\right)\right) .
$$

It is probably better illustrated on an example: if P has degree 2 and Q degree 3 , then we have

$$
S(P, Q):=\left(\begin{array}{ccccc}
p_{0} & 0 & 0 & q_{0} & 0 \\
p_{1} & p_{0} & 0 & q_{1} & q_{0} \\
p_{2} & p_{1} & p_{0} & q_{2} & q_{1} \\
0 & p_{2} & p_{1} & q_{3} & q_{2} \\
0 & 0 & p_{2} & 0 & q_{3}
\end{array}\right) .
$$

1. Let $v=\left(v_{0}, \ldots, v_{d_{Q}-1}, w_{0}, \ldots, w_{d_{P}-1}\right) \in K^{D}$. Compute $S(P, Q) \cdot v$ and express it in terms of the polynomials $V=\sum v_{i} X^{i}$ and $W=\sum w_{i} X^{i}$.
2. What is the best complexity you can achieve for computing a product $S(P, Q) \cdot v$ using fast arithmetic?
3. If P, Q are coprime, what is the best complexity you can achieve for solving the equation $S(P, Q) \cdot v=$ w ? Or computing the inverse of $S(P, Q)$?
