Tutorial 5

In all the exercises, \mathbb{K} be a commutative field of characteristic not equal to 2 (the FFT is quite tricky to work out in characteristic 2 - no nice roots of unity), we shall assume that all operations in K cost $O(1)$, and $M(n)$ stands for the complexity of multiplying two polynomials of degree n.

1 FFT as a particular multipoint evaluation

1. Let $n=2^{k} \in \mathbb{N}$, and P and Q be two polynomials of $K[X]$ with degree at most $n / 2-1$. Explain why the FFT algorithm for multiplying P and Q is a particular case of the fast multipoint evaluation algorithm.
2. Recall what is the complexity of multiplying P and Q using the FFT algorithm. What is the general complexity of fast multi-point evaluation at n points? Why is the complexity of the FFT algorithm better than in the general fast multipoint evaluation algorithm?

2 Fast CRT

1. Recall (any version of) the Chinese Remainder Theorem.

Let $P_{i} \in K[X]$ for $i \in\{0, \ldots, k-1\}$ be pairwise coprime polynomials, with $d_{i}:=\operatorname{deg} P_{i}$. Let $N=\prod_{i=0}^{k-1} P_{i}$ and $n:=\sum_{i=0}^{k-1} d_{i}=\operatorname{deg} N$.
Note some useful properties of $M(n): \sum_{i=0}^{k-1} M\left(d_{i}\right) \leq M(n)$ (M is superlinear) and $M(2 n)=$ $O(M(n))$.
2. Let u_{0}, \ldots, u_{k-1} be polynomials with $\operatorname{deg} u_{i}<d_{i}$. Give an algorithm of complexity $O(M(n) \log n \log k)$ to compute a polynomial x of degree $<n$ such that

$$
\begin{equation*}
x=u_{i} \quad \bmod P_{i} \forall i \in[k] . \tag{1}
\end{equation*}
$$

(Bonus: Note that your algorithm works in the integer case (if P_{i} and u_{i} are integers).)
3. Prove that one can compute all the polynomials $R_{i}:=N \bmod P_{i}^{2}$ in time $O(M(n) \log k)$ (generalize fast multipoint evaluation).
4. Define $S_{i}=\left(R_{i} / P_{i}\right)^{-1} \bmod P_{i}$. Show that S_{i} is well defined (i.e. R_{i} / P_{i} is invertible modulo P_{i}) and that one can compute all the S_{i} 's in time $O(M(n) \log n)$.
5. Prove that $x=\sum_{i=0}^{k-1} c_{i} N / P_{i}$ with $c_{i}=u_{i} S_{i} \bmod P_{i}$ is a solution to question 2 , and explain how to compute x in time $O(M(n) \log n)$ - try to use a similar strategy to the one that was used during the class for evaluating Lagrange's formula in quasilinear time.

3 Determinant

Let $M \in \mathcal{M}_{n}(\mathbb{K}[X])$. Assume that all the entries of M have degree at most d. Give an evaluation interpolation algorithm for computing $\operatorname{det}(M)$. What is its complexity?

4 Hermite Interpolation

For $i \in\{1, \cdots, n\}$, let $\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{K}^{3}$ with x_{i} pairwise distinct. An Hermite interpolating polynomial for $\left(x_{i}, y_{i}, z_{i}\right)$ is a polynomial P of degree $\leq 2 n-1$ such that $P\left(x_{i}\right)=y_{i}$ and $P^{\prime}\left(x_{i}\right)=z_{i}$.

1. Show that such a P exists and is unique.
2. Give an algorithm to find P. What is the complexity of this algorithm? Hint: Try to generalize Newton's algorithm for interpolation. (You should not give the same algorithm as in next question).
3. Use Exercise 2 to give a quasi-linear time algorithm (Hint: try to express the constraints $P\left(x_{i}\right)=y_{i}$ and $P^{\prime}\left(x_{i}\right)=z_{i}$ as a unique constraint of the form $P \equiv Q_{i} \bmod \left(X-x_{i}\right)^{2}$ for some polynomial Q_{i} of degree 1).
4. Can you state a generalization to higher order derivatives? With a different order at each point?
