Tutorial 4

1 Applications of the extended euclidean algorithm

1.1 Computing the inverse

1. Let n be an integer, and $0 \leq a<n$ be such that $\operatorname{gcd}(a, n)=1$. Give an algorithm that computes $a^{-1} \bmod n$ in time $O(M(\log n) \log \log n)$. (Hint : use the extended euclidean algorithm).
2. Let $P \in K[X]$ be a polynomial of degree d with coefficients in a field K and $Q \in K[X]$ be a polynomial of degree less than d, such that $\operatorname{gcd}(P, Q)=1$. Prove that Q is invertible modulo P and give an algorithm to compute its inverse using $O(M(d) \log d)$ operations in K.

1.2 Diofantine equation

The aim of this exercise is to describe the set of all solutions (u, v) of the equation

$$
\begin{equation*}
a u+b v=t \tag{1}
\end{equation*}
$$

1. Show that if $(u, v)=\left(s_{1}, s_{2}\right)$ is a solution of (1), the general solution is of the form $(u, v)=\left(s_{1}+s_{1}^{\prime}, s_{2}+s_{2}^{\prime}\right)$ for $\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ satisfying $a s_{1}^{\prime}+b s_{2}^{\prime}=0$.
2. Find all solutions of $a u+b v=0$ for a, b coprime.
3. Find a solution of (1) for a, b coprime. (Hint: Use Extended Euclidean Algorithm.)
4. Observe that t must be divisible by $\operatorname{gcd}(a, b)$.
5. Using the previous questions, give the general solution of (1).

2 Rational function reconstruction

Let K be a field, $m \in K[X]$ of degree $n>0$, and $f \in K[X]$ such that $\operatorname{deg} f<n$. For a fixed $k \in\{1, \ldots, n\}$, we want to find a pair of polynomials $(r, t) \in K[X]^{2}$, satisfying

$$
\begin{equation*}
r=t \cdot f \quad \bmod m, \quad \operatorname{deg} r<k, \quad \operatorname{deg} t \leqslant n-k \quad \text { and } \quad t \neq 0 \tag{2}
\end{equation*}
$$

1. Consider $A(X)=\sum_{l=0}^{N-1} a_{l} X^{l} \in K[X]$ a polynomial. Show that if $A(X)=P(X) / Q(X) \bmod X^{N}$, where $P, Q \in K[X], Q(0)=1$ and $\operatorname{deg} P<\operatorname{deg} Q$, then the coefficients of A, starting from $a_{\operatorname{deg} Q}$ can be computed as a linear recurrent sequence of previous $\operatorname{deg} Q$ coefficients of A. What can you say in the converse setting when the coefficients of A satisfy a linear recurrence relation?
2. Inside (2), consider the case when $m=x^{n}$. Describe a linear algebra-based method for finding a t and r. (Hint: do not use the previous question).
3. Show that, if $\left(r_{1}, t_{1}\right)$ and $\left(r_{2}, t_{2}\right)$ are two pairs of polynomials that satisfy (2), then we have $r_{1} t_{2}=r_{2} t_{1}$.

We will use the Extended Euclidean Algorithm to solve problem (2).
4. Let $r_{j}, u_{j}, v_{j} \in F[X]$ be the quantities computed during the j-th pass of the Extended Euclidean Algorithm for the pair (m, f), where j is minimal such that $\operatorname{deg} r_{j}<k$. Show that $\left(r_{j}, v_{j}\right)$ satisfy (2). What can you say about the complexity of this method?
5. Application. Given $2 n$ consecutive terms of a recursive sequence of order n, give the recurrence. (Hint: this is where you use question 1). Illustrate your method on the Fibonacci sequence.

3 Introduction to resultant

The objective of this exercise is to compute the gcd of elements in the ring $K[X, Y]$ with K a field, or in $\mathbb{Z}[X]$. Then, we will use the same idea to compute the intersection of two curves parametrized by a polynomial equation in \mathbb{R}^{2}.

1. Can we compute the euclidean division of X by 2 in $\mathbb{Z}[X]$? Give an equivalent in $K[X, Y]$, i.e. find two elements in $K[X, Y]$ such that we cannot compute their euclidean division (where we see $K[X, Y]=(K[Y])[X]$ as polynomials in X with coefficients in $K[Y]$).
The problem here, when we want to compute the euclidean division of elements in $(K[Y])[X]$ and $\mathbb{Z}[X]$, is that the coefficients of our polynomials in X are not in a field but in the rings $K[Y]$ and \mathbb{Z}. In order to circumvent this problem, we embed these rings in their fraction field, that is we embed $K[Y]$ in $K(Y)$ and \mathbb{Z} in \mathbb{Q}.
If P and Q are elements of $\mathbb{Z}[X]$, we will see them as elements of $\mathbb{Q}[X]$ and compute their gcd D in $\mathbb{Q}[X]$. Our objective is then to recover their gcd in $\mathbb{Z}[X]$ (this works in the same way for $K[Y][X]$ and $K(Y)[X]$).
2. What is the gcd of $6 X$ and $4 X^{2}+8 X$ in $\mathbb{Q}[X]$? And in $\mathbb{Z}[X]$?

Let \mathcal{R} be one of the rings \mathbb{Z} or $K[Y]$, and $P \in \mathcal{R}[X]$. We say that P is primitive if the gcd of the coefficients of P is 1 (for instance, $2+4 X+5 X^{2} \in \mathbb{Z}[X]$ is a primitive polynomial).
3. (Gauss Lemma) Let P and Q be primitive polynomials in $\mathbb{Z}[X]$. Prove that their product $P Q$ is also primitive.
4. Let $P, Q \in \mathbb{Z}[X]$ with Q primitive. Assume we have $R \in \mathbb{Q}[X]$ such that $P=Q R$. Prove that the coefficients of R are in fact in \mathbb{Z}.
5. Let P and Q be primitive polynomials in $\mathbb{Z}[X]$. Deduce from the previous questions a way of computing the gcd of P and Q in $\mathbb{Z}[X]$, from the one in $\mathbb{Q}[X]$.
6. What can we do if P and Q are not primitive?

Remark. This method for computing the gcd of polynomials in $\mathbb{Z}[X]$ also works the same way in $K[Y][X]$.
7. (Resultant) Let $A[Y, X]$ and $B[Y, X]$ be coprime polynomials in $K[Y][X]$. Prove that there exist polynomials $U, V \in K[X][Y]$ and $S \in K[Y]$ such that

$$
U[Y, X] A[Y, X]+V[Y, X] B[Y, X]=S[Y]
$$

(Hint : use Bezout in $K(Y)$ [X], with $K(Y)$ a field).
8. (Application) Find the polynomials U, V and S for $P=X^{2}-X Y+Y-1$ and $Q=X+Y^{2}-1$ in $\mathbb{R}[X]$.
9. Let \mathcal{C}_{1} and \mathcal{C}_{2} be curves in \mathbb{R}^{2} parametrized by the equations $x=1-y^{2}$ and $x^{2}-x y=1-y$ respectively. Find all the intersection points of theses curves in \mathbb{R}^{2}. (Hint: this is equivalent to finding all $(x, y) \in \mathbb{R}^{2}$ that are common roots of the polynomials P and Q of the previous question).

