TUTORIAL 3

1 Recursive division

Let a and b be two polynomials in $K[x]$ such that $\operatorname{deg} a=4 n$ and $\operatorname{deg} b=2 n$ and take n to be a power of 2 . We decompose a and b such that $a(x)=a_{h}(x) x^{2 n}+a_{l}(x)$ and $b(x)=b_{h}(x) x^{n}+b_{l}(x)$, where $\operatorname{deg} a_{h}, \operatorname{deg} a_{l} \leqslant 2 n$ and $\operatorname{deg} b_{h}, \operatorname{deg} b_{l} \leqslant n$.

Consider $D(n)$ as the complexity, in number of arithmetic operations over K, required to perform the euclidean division of a degree $2 n$ polynomial by a degree n polynomial. Similarly, we denote by $M(n)$ the complexity of multiplying two degree n polynomials over R.

We perform the euclidean division of a_{h} by b_{h} (i.e. $a_{h}=b_{h} q_{h}+r_{h}, \operatorname{deg} r_{h}<\operatorname{deg} b_{h}$).

1. Show that $\operatorname{deg}\left(a-b q_{h} x^{n}\right)<3 n$ and that $a-b q_{h} x^{n}$ is computable using $D(n)+M(n)+O(n)$ operations.
2. Show that we can finish dividing a by b using another $D(n)+M(n)+O(n)$ operations.
3. What is the value of $D(n)$ if $M(n)=n^{\alpha}, \alpha>1$?
4. Same question as before, for $M(n)=n(\log n)^{\alpha}, \alpha>1$.

2 Composition of polynomials

1. What is the cost of computing the coefficients of the composition $f \circ g$ of polynomials f, g of degrees d_{1}, d_{2} ? (Assume that ring operations have unit cost.) Use that $f(x)=\sum_{i=0}^{n} a_{i} x^{i}=$ $a_{0}+x\left(a_{1}+x\left(a_{2}+\cdots+x\left(a_{n-1}+a_{n} x\right) \ldots\right)\right.$.
Let $N>0$ be a power of 2 and let A and B be two polynomials over \mathbb{K} with $B(0)=0$ and $B^{\prime}(0) \neq 0$. We will study a fast algorithm for computing the composition $A(B) \bmod X^{N}$ which is due to Brent and Kung (1978).

Let $m>0$ be a parameter which we will tune later. The algorithm is based on the following Taylor's expansion.
2. Writing $B=B_{1}+X^{m} B_{2}$ where B_{1} is a polynomial of degree $<m$ in $\mathbb{K}[X]$, show that

$$
A(B)=A\left(B_{1}\right)+A^{\prime}\left(B_{1}\right) X^{m} B_{2}+A^{\prime \prime}\left(B_{1}\right) \frac{X^{2 m} B_{2}^{2}}{2!}+A^{(3)}\left(B_{1}\right) \frac{X^{3 m} B_{2}^{3}}{3!}+\cdots
$$

Having this decomposition, let us now observe that once we have computed the composition $A\left(B_{1}\right)$ we can compute the other terms efficiently.
3. Let F and G be two polynomials with $G^{\prime}(0) \neq 0$, and assume that we have computed $F(G) \bmod X^{N}$. Show how to compute $F^{\prime}(G) \bmod X^{N}$ using $\mathcal{O}(\mathrm{M}(N))$ operations in \mathbb{K}, where $\mathrm{M}(n)$ stands for the complexity of multiplying two polynomials of degree n over \mathbb{K}.
4. Denoting by $\mathcal{C}(m, N)$ the number of operations used for computing $A\left(B_{1}\right) \bmod X^{N}$, deduce from the previous question a cost bound for computing $A(B) \bmod X^{N}$.
To obtain a fast algorithm, it remains to give an efficient method to compute $A\left(B_{1}\right) \bmod X^{N}$. To this end, we will study the following more general situation.
5. Let F and G be polynomials over \mathbb{K} of degrees k and m respectively, with $G(0)=0$. Give a divide-andconquer algorithm which computes $F(G) \bmod X^{N}$ using $\mathcal{O}\left(\frac{k m}{N} \mathrm{M}(N) \log (N) \log (k)\right)$ operations in \mathbb{K}.
6. Deduce an upper bound for $\mathcal{C}(m, N)$, and a cost bound for computing $A(B) \bmod X^{N}$. Conclude by giving the whole algorithm, including a good choice of m and the corresponding cost bound.

3 Logarithm and exponential

For polynomials $S, T \in \mathbb{K}[X]$ such that $S(0)=0$ and $T(0)=0$ we define

$$
\begin{gathered}
\exp _{n}(S(X))=\sum_{k=0}^{n-1} \frac{S(X)^{k}}{k!} \bmod X^{n} \\
\log _{n}(1+T(X))=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{T(X)^{k}}{k} \bmod X^{n}
\end{gathered}
$$

1. Assume $A(0)=0$, prove that

$$
(A(X)+1)^{-1}=\sum_{k=0}^{m-1}(-1)^{k} A(X)^{k} \bmod X^{m}
$$

2. Recall that $S(0)=0$. Let $U_{n}(X)=S^{\prime}(X) /(S(X)+1)=\sum_{k=0}^{n-2} u_{k} X^{k} \bmod X^{n-1}$ (remark that $S(X)+1$ is invertible modulo X^{n} because $S(0)+1 \neq 0$). Prove that

$$
\log _{n}(1+S(X))=\sum_{k=1}^{n-1} u_{k-1} \frac{X^{k}}{k} \bmod X^{n}
$$

(Hint: use question 1).
3. Deduce a quasi-linear time algorithm to compute $\log _{n}(S(X)+1)$.
4. Prove that if $T(0)=0$, then $\log _{n}\left(\exp _{n}(T(X))=T(X)\right.$ (remark that this is well defined because $\left.\exp _{n}(T(0))=1\right)$. (Hint: derive the two terms of the expression above).
5. Let $Y=\exp _{N}(T(X))-1 \bmod X^{N}$. Using question above, we have that

$$
f(Y)=\log _{N}(1+Y)-T(X)=0 \quad \bmod X^{N} .
$$

Using Hensel lifting, deduce an algorithm computing $Y=\exp _{N}(T(X))-1 \bmod X^{N}$ in time $O(M(N))$. (Hint: remember that as M is super-linear we have that $M(N)+M(N / 2)+\cdots+$ $M\left(N / 2^{k}\right)+\cdots \leq 2 M(N)$).

