TUTORIAL 3

1 Recursive division

Let a and b be two polynomials in K[x] such that deg a = 4n and deg b = 2n and take n to be a power of 2. We decompose a and b such that $a(x) = a_h(x)x^{2n} + a_l(x)$ and $b(x) = b_h(x)x^n + b_l(x)$, where deg a_h , deg $a_l \leq 2n$ and deg b_h , deg $b_l \leq n$.

Consider D(n) as the complexity, in number of arithmetic operations over K, required to perform the euclidean division of a degree 2n polynomial by a degree n polynomial. Similarly, we denote by M(n) the complexity of multiplying two degree n polynomials over R.

We perform the euclidean division of a_h by b_h (i.e. $a_h = b_h q_h + r_h, \deg r_h < \deg b_h$).

- 1. Show that $deg(a bq_h x^n) < 3n$ and that $a bq_h x^n$ is computable using D(n) + M(n) + O(n) operations.
- 2. Show that we can finish dividing a by b using another D(n) + M(n) + O(n) operations.
- 3. What is the value of D(n) if $M(n) = n^{\alpha}, \alpha > 1$?
- 4. Same question as before, for $M(n) = n(\log n)^{\alpha}, \alpha > 1$.

2 Composition of polynomials

1. What is the cost of computing the coefficients of the composition $f \circ g$ of polynomials f, g of degrees d_1, d_2 ? (Assume that ring operations have unit cost.) Use that $f(x) = \sum_{i=0}^{n} a_i x^i = a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + a_n x) \dots))$.

Let N > 0 be a power of 2 and let A and B be two polynomials over K with B(0) = 0 and $B'(0) \neq 0$. We will study a fast algorithm for computing the composition $A(B) \mod X^N$ which is due to Brent and Kung (1978).

Let m > 0 be a parameter which we will tune later. The algorithm is based on the following Taylor's expansion.

2. Writing $B = B_1 + X^m B_2$ where B_1 is a polynomial of degree < m in $\mathbb{K}[X]$, show that

$$A(B) = A(B_1) + A'(B_1)X^m B_2 + A''(B_1)\frac{X^{2m}B_2^2}{2!} + A^{(3)}(B_1)\frac{X^{3m}B_2^3}{3!} + \cdots$$

Having this decomposition, let us now observe that once we have computed the composition $A(B_1)$ we can compute the other terms efficiently.

3. Let F and G be two polynomials with $G'(0) \neq 0$, and assume that we have computed $F(G) \mod X^N$. Show how to compute $F'(G) \mod X^N$ using $\mathcal{O}(\mathcal{M}(N))$ operations in \mathbb{K} , where $\mathcal{M}(n)$ stands for the complexity of multiplying two polynomials of degree n over \mathbb{K} . 4. Denoting by $\mathcal{C}(m, N)$ the number of operations used for computing $A(B_1) \mod X^N$, deduce from the previous question a cost bound for computing $A(B) \mod X^N$.

To obtain a fast algorithm, it remains to give an efficient method to compute $A(B_1) \mod X^N$. To this end, we will study the following more general situation.

- Let F and G be polynomials over K of degrees k and m respectively, with G(0) = 0. Give a divide-and-conquer algorithm which computes F(G) mod X^N using O(^{km}/_NM(N) log(N) log(k)) operations in K.
- 6. Deduce an upper bound for C(m, N), and a cost bound for computing $A(B) \mod X^N$. Conclude by giving the whole algorithm, including a good choice of m and the corresponding cost bound.

3 Logarithm and exponential

For polynomials $S, T \in \mathbb{K}[X]$ such that S(0) = 0 and T(0) = 0 we define

$$\begin{split} \exp_n(S(X)) &= \sum_{k=0}^{n-1} \frac{S(X)^k}{k!} \ \mathrm{mod} \ X^n \\ \log_n(1+T(X)) &= \sum_{k=1}^{n-1} (-1)^{k+1} \frac{T(X)^k}{k} \ \mathrm{mod} \ X^n \end{split}$$

1. Assume A(0) = 0, prove that

$$(A(X) + 1)^{-1} = \sum_{k=0}^{m-1} (-1)^k A(X)^k \mod X^m$$

2. Recall that S(0) = 0. Let $U_n(X) = S'(X)/(S(X) + 1) = \sum_{k=0}^{n-2} u_k X^k \mod X^{n-1}$ (remark that S(X) + 1 is invertible modulo X^n because $S(0) + 1 \neq 0$). Prove that

$$\log_n(1+S(X)) = \sum_{k=1}^{n-1} u_{k-1} \frac{X^k}{k} \mod X^n$$

(Hint: use question 1).

- 3. Deduce a quasi-linear time algorithm to compute $\log_n(S(X) + 1)$.
- 4. Prove that if T(0) = 0, then $\log_n(\exp_n(T(X)) = T(X)$ (remark that this is well defined because $\exp_n(T(0)) = 1$). (Hint: derive the two terms of the expression above).
- 5. Let $Y = \exp_N(T(X)) 1 \mod X^N$. Using question above, we have that

$$f(Y) = \log_N(1+Y) - T(X) = 0 \mod X^N$$

Using Hensel lifting, deduce an algorithm computing $Y = \exp_N(T(X)) - 1 \mod X^N$ in time O(M(N)). (Hint: remember that as M is super-linear we have that $M(N) + M(N/2) + \cdots + M(N/2^k) + \cdots \leq 2M(N)$).