
ENS LYON – M1 – COMPUTER ALGEBRA A. PELLET--MARY // 2016–2017

TUTORIAL 3

1 Recursive division

Let a and b be two polynomials in K[x] such that deg a = 4n and deg b = 2n and take n to be a power
of 2. We decompose a and b such that a(x) = ah(x)x

2n + al(x) and b(x) = bh(x)x
n + bl(x), where

deg ah,deg al 6 2n and deg bh, deg bl 6 n.
Consider D(n) as the complexity, in number of arithmetic operations over K, required to perform the

euclidean division of a degree 2n polynomial by a degree n polynomial. Similarly, we denote by M(n) the
complexity of multiplying two degree n polynomials over R.

We perform the euclidean division of ah by bh (i.e. ah = bhqh + rh,deg rh < deg bh).

1. Show that deg(a − bqhx
n) < 3n and that a − bqhx

n is computable using D(n) + M(n) + O(n)
operations.

2. Show that we can finish dividing a by b using another D(n) +M(n) +O(n) operations.

3. What is the value of D(n) if M(n) = nα, α > 1?

4. Same question as before, for M(n) = n(log n)α, α > 1.

2 Composition of polynomials

1. What is the cost of computing the coefficients of the composition f ◦ g of polynomials f, g of
degrees d1, d2? (Assume that ring operations have unit cost.) Use that f(x) =

∑n
i=0 aix

i =
a0 + x(a1 + x(a2 + · · ·+ x(an−1 + anx) . . .).

Let N > 0 be a power of 2 and let A and B be two polynomials over K with B(0) = 0 and B′(0) 6= 0.
We will study a fast algorithm for computing the composition A(B) mod XN which is due to Brent
and Kung (1978).

Let m > 0 be a parameter which we will tune later. The algorithm is based on the following Taylor’s
expansion.

2. Writing B = B1 +XmB2 where B1 is a polynomial of degree < m in K[X], show that

A(B) = A(B1) + A′(B1)X
mB2 + A′′(B1)

X2mB2
2

2!
+ A(3)(B1)

X3mB3
2

3!
+ · · ·

Having this decomposition, let us now observe that once we have computed the composition A(B1) we
can compute the other terms efficiently.

3. Let F andG be two polynomials withG′(0) 6= 0, and assume that we have computed F (G) mod XN .
Show how to compute F ′(G) mod XN using O(M(N)) operations in K, where M(n) stands for the
complexity of multiplying two polynomials of degree n over K.



4. Denoting by C(m,N) the number of operations used for computing A(B1) mod XN , deduce from
the previous question a cost bound for computing A(B) mod XN .

To obtain a fast algorithm, it remains to give an efficient method to compute A(B1) mod XN . To this
end, we will study the following more general situation.

5. Let F andG be polynomials over K of degrees k andm respectively, withG(0) = 0. Give a divide-and-
conquer algorithm which computes F (G) mod XN using O(kmN M(N) log(N) log(k)) operations in
K.

6. Deduce an upper bound for C(m,N), and a cost bound for computing A(B) mod XN . Conclude by
giving the whole algorithm, including a good choice of m and the corresponding cost bound.

3 Logarithm and exponential

For polynomials S, T ∈ K[X] such that S(0) = 0 and T (0) = 0 we define

expn(S(X)) =
n−1∑
k=0

S(X)k

k!
mod Xn

logn(1 + T (X)) =
n−1∑
k=1

(−1)k+1T (X)k

k
mod Xn

1. Assume A(0) = 0, prove that

(A(X) + 1)−1 =
m−1∑
k=0

(−1)kA(X)k mod Xm

2. Recall that S(0) = 0. Let Un(X) = S′(X)/(S(X) + 1) =
∑n−2

k=0 ukX
k mod Xn−1 (remark that

S(X) + 1 is invertible modulo Xn because S(0) + 1 6= 0). Prove that

logn(1 + S(X)) =

n−1∑
k=1

uk−1
Xk

k
mod Xn

(Hint: use question 1).

3. Deduce a quasi-linear time algorithm to compute logn(S(X) + 1).

4. Prove that if T (0) = 0, then logn(expn(T (X)) = T (X) (remark that this is well defined because
expn(T (0)) = 1). (Hint: derive the two terms of the expression above).

5. Let Y = expN (T (X))− 1 mod XN . Using question above, we have that

f(Y ) = logN (1 + Y )− T (X) = 0 mod XN .

Using Hensel lifting, deduce an algorithm computing Y = expN (T (X)) − 1 mod XN in time
O(M(N)). (Hint: remember that as M is super-linear we have that M(N) + M(N/2) + · · · +
M(N/2k) + · · · ≤ 2M(N)).

Page 2


	Recursive division
	Composition of polynomials
	Logarithm and exponential

