Tutorial 2

1 Multiplication of two polynomials

Give an algorithm to multiply a degree 1 polynomial by a degree 2 polynomial in at most 4 multiplications.

2 Alternative FFT algorithm

Let P be a polynomial of degree at most $2^{k}-1$, and write $P=P_{h} X^{2^{k-1}}+P_{l}$. Let ω be a primitive 2^{k}-th root of 1 .

1. Prove that $P\left(\omega^{2 i}\right)=P_{h}\left(\omega^{2 i}\right)+P_{l}\left(\omega^{2 i}\right)$ and $P\left(\omega^{2 i+1}\right)=-P_{h}\left(\omega^{2 i+1}\right)+P_{l}\left(\omega^{2 i+1}\right)$.
2. Deduce an alternative FFT algorithm. (Hint: introduce the polynomial $Q(X)=P_{l}(\omega X)-P_{h}(\omega X)$).

3 Is squaring easier than multiplying?

Show that computing the square of a n-digit number is not (asymptotically) easier than multiplying two n-digit numbers.

4 The "binary splitting" method computation of n !

We want to compute n ! and assume that n is a "small" integer (i.e. it fits into one machine word). We denote with $M(k)$ the cost (in terms of elementary operations) of the multiplication of two k-bit numbers, and we assume $2 M(k / 2) \leqslant M(k)$ (we remind some typical values: $M(k)=O\left(k^{2}\right)$ with naive multiplication, $O\left(k^{\log (3) / \log (2)}\right)$ with Karatsuba multiplication and $O(k \log k \log \log k)$ with the FFT-in finite ring variant of the Schönhage \& Strassen algorithm). Use the fact that $\log n!\sim n \log n$.

1. What is the cost of multiplying $O(n)$-digit integer by a $O(1)$-digit integer by the naive algorithm. Argue that it is essentially optimal.
2. We first consider the simplest approach: $x_{1}=1, x_{2}=2 x_{1}, x_{3}=3 x_{2}, \ldots, x_{n}=n x_{n-1}$. Show that the cost of this approach is $O\left(n^{2}(\log n)^{2}\right)$.
3. We define

$$
p(a, b)=(a+1)(a+2) \cdots(b-1) b=\frac{b!}{a!} .
$$

Suggest a recursive method to compute n ! with cost $O(\log n M(n \log n))$. With the classical multiplication algorithms, is this more interesting than the simple method?

5 Recursive division

Let a and b be two polynomials in $K[x]$ such that $\operatorname{deg} a=4 n$ and $\operatorname{deg} b=2 n$ and take n to be a power of 2 . We decompose a and b such that $a(x)=a_{h}(x) x^{2 n}+a_{l}(x)$ and $b(x)=b_{h}(x) x^{n}+b_{l}(x)$, where $\operatorname{deg} a_{h}, \operatorname{deg} a_{l} \leqslant 2 n$ and $\operatorname{deg} b_{h}, \operatorname{deg} b_{l} \leqslant n$.

Consider $D(n)$ as the complexity, in number of arithmetic operations over K, required to perform the euclidean division of a degree $2 n$ polynomial by a degree n polynomial. Similarly, we denote by $M(n)$ the complexity of multiplying two degree n polynomials over R.

We perform the euclidean division of a_{h} by b_{h} (i.e. $a_{h}=b_{h} q_{h}+r_{h}, \operatorname{deg} r_{h}<\operatorname{deg} b_{h}$).

1. Show that $\operatorname{deg}\left(a-b q_{h} x^{n}\right)<3 n$ and that $a-b q_{h} x^{n}$ is computable using $D(n)+M(n)+O(n)$ operations.
2. Show that we can finish dividing a by b using another $D(n)+M(n)+O(n)$ operations.
3. What is the value of $D(n)$ if $M(n)=n^{\alpha}, \alpha>1$?
4. Same question as before, for $M(n)=n(\log n)^{\alpha}, \alpha>1$.
