ENS LYON — M1 — COMPUTER ALGEBRA A. PELLET--MARY // 2016-2017

TUTORIAL 2

1 Multiplication of two polynomials

Give an algorithm to multiply a degree 1 polynomial by a degree 2 polynomial in at most 4 multiplications.

2 Alternative FFT algorithm

Let P be a polynomial of degree at most 2¥ — 1, and write P = P, X 2 P,. Let w be a primitive 2*-th
root of 1.

1. Prove that P(w?) = P, (w?) + P/(w?) and P(w?*1) = — Py (w? 1) 4+ P (w®T1).

2. Deduce an alternative FFT algorithm. (Hint: introduce the polynomial Q(X) = Pj(wX) — Pp(wX)).

3 Is squaring easier than multiplying?

Show that computing the square of a n-digit number is not (asymptotically) easier than multiplying two
n-digit numbers.

4 The “binary splitting” method computation of n!

We want to compute n! and assume that n is a ”small” integer (i.e. it fits into one machine word). We denote
with M (k) the cost (in terms of elementary operations) of the multiplication of two k-bit numbers, and we
assume 2M (k/2) < M (k) (we remind some typical values: M (k) = O(k?) with naive multiplication,
O(k'8(3)/108(2)) with Karatsuba multiplication and O(k log k log log k) with the FFT-in finite ring variant
of the Schonhage & Strassen algorithm). Use the fact that logn! ~ nlogn.

1. What is the cost of multiplying O(n)-digit integer by a O(1)-digit integer by the naive algorithm. Argue
that it is essentially optimal.

2. We first consider the simplest approach: z; = 1, x9 = 221, 3 = 3x2, ..., T, = nTy_1. Show that
the cost of this approach is O(n?(logn)?).

3. We define )
pla,b) = (a+1)(a+2)--- (b—1)b= —

a!’
Suggest a recursive method to compute n! with cost O(lognM(nlogn)). With the classical
multiplication algorithms, is this more interesting than the simple method?



5 Recursive division

Let a and b be two polynomials in K[z] such that dega = 4n and degb = 2n and take n to be a power
of 2. We decompose a and b such that a(z) = ap(z)2?" + a;(z) and b(z) = by(z)z™ + by(x), where
deg ay,,deg a; < 2n and deg by, deg b; < n.

Consider D(n) as the complexity, in number of arithmetic operations over K, required to perform the
euclidean division of a degree 2n polynomial by a degree n polynomial. Similarly, we denote by M (n) the
complexity of multiplying two degree n polynomials over K.

We perform the euclidean division of aj, by by, (i.e. ap, = bpgp + 11, degry < degbp).

1. Show that deg(a — bgpz™) < 3n and that a — bgpx™ is computable using D(n) + M (n) + O(n)
operations.

2. Show that we can finish dividing a by b using another D(n) + M (n) + O(n) operations.
3. What is the value of D(n) if M (n) =n%, o > 1?

4. Same question as before, for M (n) = n(logn)*, a > 1.

Page 2



	Multiplication of two polynomials
	Alternative FFT algorithm
	Is squaring easier than multiplying?
	The ``binary splitting'' method computation of n!
	Recursive division

