Tutorial 10 - REVISion

1 Time to read your lessons

1. Fill the following table without using the fast algorithms.

		$K[X]$
What we count in the complexity		A is a polynomial
Size of the input	a is an integer	
Addition/Subtraction		
Multiplication		
Euclidean division		
Extended GCD		
Multiple point evaluation		
Interpolation/CRT		

2. We denote by $M(n)$ the complexity of multiplying two integers (resp. two polynomials) of size n (resp. of degree n). What is the best value you know for $M(n)$ (beware, this is not the same for polynomials and integers)?
3. Fill the following table using the fast algorithms.

	\mathbb{Z}	$K[X]$
Addition/Subtraction		
Multiplication		
Euclidean division		
Extended GCD		
Multiple point evaluation		
Interpolation/CRT		

4. What is the complexity of adding/multiplying polynomials in $\mathbb{F}_{q}[X]$ in terms of bit operations (use naive algorithms).
5. Fill the following table for linear algebra.

	$M_{n}(K)$	$M_{n}(K)$ sparse $(\omega$ non zero coefficients $)$
What we count in the complexity		
Size of the input		
Addition/Subtraction		
Matrix \times vector		
Multiplication		
Gauss Pivoting		
Determinant		
Linear systems		
Inversion		
Characteristic polynomial		

2 Evaluating the derivatives of a polynomial at some point

In this exercise, we are given a degree n polynomial $P \in K[X]$ for some field K and a point a in K. Our objective is to evaluate all the derivatives of P at point a.

1. Give a naive algorithm that computes $P^{(i)}(a)$ for all $i \in\{0, \cdots, n\}$. What is its complexity ?
2. If $a=0$, give an algorithm that computes $P^{(i)}(0)$ for $0 \leq i \leq n$ in linear time.
3. Recall an algorithm that computes $Q(X)=P(X+a)$ from P in quasi-linear time. (Hint: you may want to compute the Euclidean division $P(X)=u(X)(X-a)^{\operatorname{deg}(P) / 2}+v(x)$ and apply a recursive algorithm).
4. Conclude by giving a quasi-linear time algorithm that computes $P^{(i)}(a)$ for all $i \in\{0, \cdots, n\}$.

3 Hensel-type strategy for solving linear system

In this exercise, we study algorithms to solve $M x=b, M \in \mathcal{M}_{n}(K[X]), b \in K[X]^{n}$. We shall assume that the degree of all coordinates of M, b is $\leqslant d$.

Cramer's formulas show that if x is a solution of $M x=b$, ($\operatorname{det} M) \cdot x \in K[X]^{n}$, and the coefficients of $(\operatorname{det} M) \cdot x$ have degree $\leqslant n d$. We'll also assume that $\operatorname{det} M(u) \neq 0$ for all $u \in K$.

1. What is the complexity of computing $B:=(M \bmod X)^{-1}$?

Let $y_{i} \in K[X]^{n}$ be a solution of $M y_{i}=b \bmod X^{i}$, and define $r_{i}=b-M y_{i}$.
2. Prove that $r_{i}=\lambda_{i} X^{i}$ for some $\lambda_{i} \in K[X]^{n}$. If $z_{i}=B \lambda_{i} \bmod X$, prove that $y_{i+1}=y_{i}+X^{i} z_{i}$ and $r_{i+1}=r_{i}-X^{i} M z_{i}$.
3. What is the complexity of computing $y_{n d+1}$ using this method? Assuming that $\operatorname{det} M$ is given as input or precomputed, deduce an algorithm for solving $M x=b$.
4. If we need to compute det M beforehand, then this computation is going to dominate the complexity of linear system solving. Can we avoid computing the determinant? (Hint: use rational reconstruction.)

4 One question / one minute

1. Find the smallest $u \geq 0$ such that

$$
\left\{\begin{array}{lr}
u \equiv 1 & \bmod 2 \\
u \equiv 2 & \bmod 3 \\
u \equiv 2 & \bmod 5
\end{array}\right.
$$

2. Explain why you can see Karatsuba's algorithm as an evaluation/interpolation algorithm.
3. Let K be a field, a_{1}, \cdots, a_{n} be elements of K and $\left(p_{0}, \cdots, p_{n-1}\right) \in K^{n}$. We want to compute the matrix-vector product

$$
\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{n} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{n} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{n} & a_{n}^{n} & \cdots & a_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n-1}
\end{array}\right) .
$$

What is the best complexity you can achieve to compute this matrix-vector product? What if ω is a n-th root of unity with n a power of 2 and $a_{i}=\omega^{i}$?

