HOMEWORK 3

1 The Hadamard transform

We define the *n*-dimensional Hadamard transform on the set of functions $f: (\mathbb{Z}/2\mathbb{Z})^n \to \mathbb{C}$ as the operator¹

$$T(f)(y) = \sum_{x \in (\mathbb{Z}/2\mathbb{Z})^n} f(x)(-1)^{\langle x, y \rangle},$$

where $\langle x, y \rangle = \sum_i x_i y_i$.

- For z ∈ (Z/2Z)ⁿ, show that T(T(f))(z) = 2ⁿf(z). What does this say about the inverse transform? To compute the Hadamard transform, we consider each function f : (Z/2Z)ⁿ → C as a 2ⁿ-dimensional vector, where the order is defined recursively as (Z/2Z)ⁿ = (Z/2Z)ⁿ⁻¹ × {0}, (Z/2Z)ⁿ⁻¹ × {1}. So, for example, if n = 1, then f = [f(0)f(1)]^T and if n = 2, then f = [f(0)f(1)f(1)f(1)]^T.
- 2. Show that $T(f) = H_n f$, where H_n is called the *Hadamard matrix* of order n and is defined as $H_n = \begin{bmatrix} H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1} \end{bmatrix}$, for $n \ge 1$ and $H_0 = 1$.
- 3. Based on the previous matrix vector product formula, give a fast recursive algorithm for computing the Hadamard transform in $O(n2^n)$ operations over \mathbb{C} .

2 Logarithm and exponential

For polynomials $S, T \in \mathbb{K}[X]$ such that S(0) = 0 and T(0) = 0, we define

$$\exp_n(S(X)) = \sum_{k=0}^{n-1} \frac{S(X)^k}{k!} \mod X^n$$
$$\log_n(1+T(X)) = \sum_{k=1}^{n-1} (-1)^{k+1} \frac{T(X)^k}{k} \mod X^n$$

1. Assume A(0) = 0, prove that

$$(A(X)+1)^{-1} = \sum_{k=0}^{m-1} (-1)^k A(X)^k \mod X^m$$

¹notice that $(-1)^x$ is well defined for $x \in \mathbb{Z}/2\mathbb{Z}$

2. Recall that S(0) = 0. Let $U_n(X) = S'(X)/(S(X) + 1) = \sum_{k=0}^{n-2} u_k X^k \mod X^{n-1}$ (note that S(X) + 1 is invertible modulo X^n because $S(0) + 1 \neq 0$). Prove that

$$\log_n(1 + S(X)) = \sum_{k=1}^{n-1} u_{k-1} \frac{X^k}{k} \mod X^n$$

(Hint: use question 1 and derive both sides of the equation).

- 3. Deduce a quasi-linear time algorithm to compute $\log_n(S(X) + 1)$.
- 4. Prove that if T(0) = 0, then $\log_n(\exp_n(T(X)) = T(X)$ (remark that this is well defined because $\exp_n(T(0)) = 1$). (Hint: derive both sides of the expression above).
- 5. Let $Y = \exp_N(T(X)) 1 \mod X^N$. Using the question above, we have that

$$f(Y) = \log_N(1+Y) - T(X) = 0 \mod X^N$$

Using Hensel lifting, deduce an algorithm computing $Y = \exp_N(T(X)) - 1 \mod X^N$ using O(M(N)) operations in K. (Hint: remember that as M is super-linear, we have that $M(N) + M(N/2) + \cdots + M(N/n^k) + \cdots \leq 2M(N)$).

3 Determinant

Let $M \in \mathcal{M}_n(\mathbb{K}[X])$. Assume that all the entries of M have degree at most d. Give an evaluation interpolation algorithm for computing det(M). What is its complexity ?

4 Quasi-Cauchy matrices

Let $\mathbf{x} = (x_i)_{0 \le i \le n-1} \in K^n$, $\mathbf{y} = (y_i)_{0 \le i \le n-1} \in K^n$. We assume that $x_i \ne y_j$ for all i, j and that $x_i \ne x_j$ and $y_i \ne y_j$ for $i \ne j$. The *Cauchy matrix* associated to these *n*-uples is the matrix $C(x, y) = (1/(x_i - y_j))_{0 \le i, j \le n-1}$.

Let $\mathbf{w} := (w_0, \ldots, w_j)$. We define a $j \times j$ diagonal matrix $D(\mathbf{w})$ by

	w_0	0	• • •	0]
$D(\mathbf{w}) =$	0	w_1	•.	0
$D(\mathbf{w}) =$	0	0	·	0
	0	0	• • •	w_{j-1}

Let now $\varphi_{\mathbf{x},\mathbf{y}} : \mathcal{M}_n(K) \to \mathcal{M}_n(K)$ defined by $\varphi_{\mathbf{x},\mathbf{y}}(A) = D(\mathbf{x}) \cdot A - A \cdot D(\mathbf{y})$. With these notations, define the (\mathbf{x}, \mathbf{y}) -displacement rank of A to be the rank of $\varphi_{\mathbf{x},\mathbf{y}}(A)$. We shall assume that $\varphi_{\mathbf{x},\mathbf{y}}(A)$ is an invertible mapping – an easy fact, the proof of which is of little interest.

- 1. What is the (\mathbf{x}, \mathbf{y}) -displacement rank of the Cauchy matrix $C(\mathbf{x}, \mathbf{y})$?
- 2. Let \mathbf{u}, \mathbf{v} be two (column) vectors in K^n . Prove that $\varphi_{\mathbf{x},\mathbf{v}}^{-1}(\mathbf{u} \cdot {}^t\mathbf{v}) = D(\mathbf{u})C(\mathbf{x},\mathbf{y})D(\mathbf{v})$.

3. Deduce from the previous question that if a matrix M has (\mathbf{x}, \mathbf{y}) -displacement rank α , there exist vectors $\mathbf{g}_1, \ldots, \mathbf{g}_{\alpha}, \mathbf{h}_1, \ldots, \mathbf{h}_{\alpha}$ such that

$$M = \sum_{j=1}^{\alpha} D(\mathbf{g}_j) C(\mathbf{x}, \mathbf{y}) D(\mathbf{h}_j).$$
(1)

(Hint: recall that if N has rank α , then $N = \sum_{i=1}^{\alpha} N_i$ with N_i of rank 1.)

4. Prove conversely that if M is of the form (1), then M has (\mathbf{x}, \mathbf{y}) -displacement rank $\leq \alpha$.

For the rest of the exercise, we shall say that a matrix with (\mathbf{x}, \mathbf{y}) -displacement rank α is represented by (\mathbf{x}, \mathbf{y}) -generators of size k if M is given as a pair of vector sequences $((\mathbf{g}_i)_{1 \leq i \leq \alpha}, (\mathbf{h}_i)_{1 \leq i \leq \alpha}) \in (K^{\alpha})^2$ such that (1) holds. Overall, this means that, when α is small, we have a compact representation for M (of size $O(\alpha n)$), and we might wonder whether we can do basic matrix arithmetic – matrix/vector product, add, multiply, inverse, determinant – using this compact representation (the last two can be done but we'll not study them).

Recall that if M is a Cauchy matrix, and v a vector, you can compute Mv using $O(M(n) \log n)$ operations in K.

- 5. If *M* is represented by (\mathbf{x}, \mathbf{y}) -generators of size α and *v* is a vector, prove that one can compute $M \cdot v$ in complexity $O(\alpha M(n) \log n)$.
- 6. If M, M' are represented by (\mathbf{x}, \mathbf{y}) -generators of size α and α' , give (\mathbf{x}, \mathbf{y}) -generators of size $\alpha + \alpha'$ for M + M', which can be computed in time $O((\alpha + \alpha')n)$.
- 7. If M, M' are represented by (\mathbf{x}, \mathbf{y}) -generators of size α (resp. by (\mathbf{y}, \mathbf{z}) -generators of size α'), give (\mathbf{x}, \mathbf{z}) -generators of size $\alpha + \alpha'$ for $M \cdot M'$, which can be computed in time $O(\alpha \alpha' M(n) \log n)$.