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HOMEWORK 3

1 The Hadamard transform

We define the n-dimensional Hadamard transform on the set of functions f : (Z/2Z)n → C as the operator1

T (f)(y) =
∑

x∈(Z/2Z)n
f(x)(−1)〈x,y〉,

where 〈x, y〉 =
∑

i xiyi.

1. For z ∈ (Z/2Z)n, show that T (T (f))(z) = 2nf(z). What does this say about the inverse transform?

To compute the Hadamard transform, we consider each function f : (Z/2Z)n → C as a 2n-dimensional
vector, where the order is defined recursively as (Z/2Z)n = (Z/2Z)n−1×{0} , (Z/2Z)n−1×{1}. So,
for example, if n = 1, then f = [f(0)f(1)]T and if n = 2, then f = [f(00)f(10)f(01)f(11)]T .

2. Show that T (f) = Hnf , where Hn is called the Hadamard matrix of order n and is defined as

Hn =

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
, for n > 1 and H0 = 1.

3. Based on the previous matrix vector product formula, give a fast recursive algorithm for computing the
Hadamard transform in O(n2n) operations over C.

2 Logarithm and exponential

For polynomials S, T ∈ K[X] such that S(0) = 0 and T (0) = 0, we define

expn(S(X)) =

n−1∑
k=0

S(X)k

k!
mod Xn

logn(1 + T (X)) =
n−1∑
k=1

(−1)k+1T (X)k

k
mod Xn

1. Assume A(0) = 0, prove that

(A(X) + 1)−1 =

m−1∑
k=0

(−1)kA(X)k mod Xm

1notice that (−1)x is well defined for x ∈ Z/2Z



2. Recall that S(0) = 0. Let Un(X) = S′(X)/(S(X) + 1) =
∑n−2

k=0 ukX
k mod Xn−1 (note that

S(X) + 1 is invertible modulo Xn because S(0) + 1 6= 0). Prove that

logn(1 + S(X)) =
n−1∑
k=1

uk−1
Xk

k
mod Xn

(Hint: use question 1 and derive both sides of the equation).

3. Deduce a quasi-linear time algorithm to compute logn(S(X) + 1).

4. Prove that if T (0) = 0, then logn(expn(T (X)) = T (X) (remark that this is well defined because
expn(T (0)) = 1). (Hint: derive both sides of the expression above).

5. Let Y = expN (T (X))− 1 mod XN . Using the question above, we have that

f(Y ) = logN (1 + Y )− T (X) = 0 mod XN .

Using Hensel lifting, deduce an algorithm computing Y = expN (T (X)) − 1 mod XN using
O(M(N)) operations in K. (Hint: remember that as M is super-linear, we have that M(N) +
M(N/2) + · · ·+M(N/nk) + · · · ≤ 2M(N)).

3 Determinant

Let M ∈ Mn(K[X]). Assume that all the entries of M have degree at most d. Give an evaluation
interpolation algorithm for computing det(M). What is its complexity ?

4 Quasi-Cauchy matrices

Let x = (xi)06i6n−1 ∈ Kn, y = (yi)06i6n−1 ∈ Kn. We assume that xi 6= yj for all i, j and
that xi 6= xj and yi 6= yj for i 6= j. The Cauchy matrix associated to these n-uples is the matrix
C(x, y) = (1/(xi − yj))06i,j6n−1.

Let w := (w0, . . . , wj). We define a j × j diagonal matrix D(w) by

D(w) =


w0 0 · · · 0

0 w1
. . . 0

0 0
. . . 0

0 0 · · · wj−1

 .
Let now ϕx,y :Mn(K)→Mn(K) defined by ϕx,y(A) = D(x) ·A−A ·D(y). With these notations,

define the (x,y)-displacement rank of A to be the rank of ϕx,y(A). We shall assume that ϕx,y(A) is an
invertible mapping – an easy fact, the proof of which is of little interest.

1. What is the (x,y)-displacement rank of the Cauchy matrix C(x,y)?

2. Let u,v be two (column) vectors in Kn. Prove that ϕ−1x,y(u · tv) = D(u)C(x,y)D(v).
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3. Deduce from the previous question that if a matrix M has (x,y)-displacement rank α, there exist
vectors g1, . . . ,gα,h1, . . . ,hα such that

M =
α∑
j=1

D(gj)C(x,y)D(hj). (1)

(Hint: recall that if N has rank α, then N =
∑α

i=1Ni with Ni of rank 1.)

4. Prove conversely that if M is of the form (1), then M has (x,y)-displacement rank 6 α.

For the rest of the exercise, we shall say that a matrix with (x,y)-displacement rank α is represented by
(x,y)-generators of size k if M is given as a pair of vector sequences ((gi)16i6α, (hi)16i6α) ∈ (Kα)2

such that (1) holds. Overall, this means that, when α is small, we have a compact representation for
M (of size O(αn)), and we might wonder whether we can do basic matrix arithmetic – matrix/vector
product, add, multiply, inverse, determinant – using this compact representation (the last two can be
done but we’ll not study them).

Recall that if M is a Cauchy matrix, and v a vector, you can compute Mv using O(M(n) log n)
operations in K.

5. If M is represented by (x,y)-generators of size α and v is a vector, prove that one can compute M · v
in complexity O(αM(n) log n).

6. If M,M ′ are represented by (x,y)-generators of size α and α′, give (x,y)-generators of size α + α′

for M +M ′, which can be computed in time O((α+ α′)n).

7. If M,M ′ are represented by (x,y)-generators of size α (resp. by (y, z)-generators of size α′), give
(x, z)-generators of size α+ α′ for M ·M ′, which can be computed in time O(αα′M(n) log n).
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