Homework 3

1 The Hadamard transform

We define the n-dimensional Hadamard transform on the set of functions $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow \mathbb{C}$ as the operator ${ }^{11}$

$$
T(f)(y)=\sum_{x \in(\mathbb{Z} / 2 \mathbb{Z})^{n}} f(x)(-1)^{\langle x, y\rangle},
$$

where $\langle x, y\rangle=\sum_{i} x_{i} y_{i}$.

1. For $z \in(\mathbb{Z} / 2 \mathbb{Z})^{n}$, show that $T(T(f))(z)=2^{n} f(z)$. What does this say about the inverse transform? To compute the Hadamard transform, we consider each function $f:(\mathbb{Z} / 2 \mathbb{Z})^{n} \rightarrow \mathbb{C}$ as a 2^{n}-dimensional vector, where the order is defined recursively as $(\mathbb{Z} / 2 \mathbb{Z})^{n}=(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \times\{0\},(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \times\{1\}$. So, for example, if $n=1$, then $f=[f(0) f(1)]^{T}$ and if $n=2$, then $f=[f(00) f(10) f(01) f(11)]^{T}$.
2. Show that $T(f)=H_{n} f$, where H_{n} is called the Hadamard matrix of order n and is defined as $H_{n}=\left[\begin{array}{cc}H_{n-1} & H_{n-1} \\ H_{n-1} & -H_{n-1}\end{array}\right]$, for $n \geqslant 1$ and $H_{0}=1$.
3. Based on the previous matrix vector product formula, give a fast recursive algorithm for computing the Hadamard transform in $O\left(n 2^{n}\right)$ operations over \mathbb{C}.

2 Logarithm and exponential

For polynomials $S, T \in \mathbb{K}[X]$ such that $S(0)=0$ and $T(0)=0$, we define

$$
\begin{gathered}
\exp _{n}(S(X))=\sum_{k=0}^{n-1} \frac{S(X)^{k}}{k!} \bmod X^{n} \\
\log _{n}(1+T(X))=\sum_{k=1}^{n-1}(-1)^{k+1} \frac{T(X)^{k}}{k} \bmod X^{n}
\end{gathered}
$$

1. Assume $A(0)=0$, prove that

$$
(A(X)+1)^{-1}=\sum_{k=0}^{m-1}(-1)^{k} A(X)^{k} \quad \bmod X^{m}
$$

[^0]2. Recall that $S(0)=0$. Let $U_{n}(X)=S^{\prime}(X) /(S(X)+1)=\sum_{k=0}^{n-2} u_{k} X^{k} \bmod X^{n-1}$ (note that $S(X)+1$ is invertible modulo X^{n} because $\left.S(0)+1 \neq 0\right)$. Prove that
$$
\log _{n}(1+S(X))=\sum_{k=1}^{n-1} u_{k-1} \frac{X^{k}}{k} \bmod X^{n}
$$
(Hint: use question 1 and derive both sides of the equation).
3. Deduce a quasi-linear time algorithm to compute $\log _{n}(S(X)+1)$.
4. Prove that if $T(0)=0$, then $\log _{n}\left(\exp _{n}(T(X))=T(X)\right.$ (remark that this is well defined because $\exp _{n}(T(0))=1$). (Hint: derive both sides of the expression above).
5. Let $Y=\exp _{N}(T(X))-1 \bmod X^{N}$. Using the question above, we have that
$$
f(Y)=\log _{N}(1+Y)-T(X)=0 \quad \bmod X^{N}
$$

Using Hensel lifting, deduce an algorithm computing $Y=\exp _{N}(T(X))-1 \bmod X^{N}$ using $O(M(N))$ operations in K. (Hint: remember that as M is super-linear, we have that $M(N)+$ $\left.M(N / 2)+\cdots+M\left(N / n^{k}\right)+\cdots \leq 2 M(N)\right)$.

3 Determinant

Let $M \in \mathcal{M}_{n}(\mathbb{K}[X])$. Assume that all the entries of M have degree at most d. Give an evaluation interpolation algorithm for computing $\operatorname{det}(M)$. What is its complexity?

4 Quasi-Cauchy matrices

Let $\mathbf{x}=\left(x_{i}\right)_{0 \leqslant i \leqslant n-1} \in K^{n}, \mathbf{y}=\left(y_{i}\right)_{0 \leqslant i \leqslant n-1} \in K^{n}$. We assume that $x_{i} \neq y_{j}$ for all i, j and that $x_{i} \neq x_{j}$ and $y_{i} \neq y_{j}$ for $i \neq j$. The Cauchy matrix associated to these n-uples is the matrix $C(x, y)=\left(1 /\left(x_{i}-y_{j}\right)\right)_{0 \leqslant i, j \leqslant n-1}$.

Let $\mathbf{w}:=\left(w_{0}, \ldots, w_{j}\right)$. We define a $j \times j$ diagonal matrix $D(\mathbf{w})$ by

$$
D(\mathbf{w})=\left[\begin{array}{cccc}
w_{0} & 0 & \cdots & 0 \\
0 & w_{1} & \ddots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & w_{j-1}
\end{array}\right]
$$

Let now $\varphi_{\mathbf{x}, \mathbf{y}}: \mathcal{M}_{n}(K) \rightarrow \mathcal{M}_{n}(K)$ defined by $\varphi_{\mathbf{x}, \mathbf{y}}(A)=D(\mathbf{x}) \cdot A-A \cdot D(\mathbf{y})$. With these notations, define the (\mathbf{x}, \mathbf{y})-displacement rank of A to be the rank of $\varphi_{\mathbf{x}, \mathbf{y}}(A)$. We shall assume that $\varphi_{\mathbf{x}, \mathbf{y}}(A)$ is an invertible mapping - an easy fact, the proof of which is of little interest.

1. What is the (\mathbf{x}, \mathbf{y})-displacement rank of the Cauchy matrix $C(\mathbf{x}, \mathbf{y})$?
2. Let \mathbf{u}, \mathbf{v} be two (column) vectors in K^{n}. Prove that $\varphi_{\mathbf{x}, \mathbf{y}}^{-1}\left(\mathbf{u} \cdot{ }^{t} \mathbf{v}\right)=D(\mathbf{u}) C(\mathbf{x}, \mathbf{y}) D(\mathbf{v})$.
3. Deduce from the previous question that if a matrix M has (\mathbf{x}, \mathbf{y})-displacement rank α, there exist vectors $\mathbf{g}_{1}, \ldots, \mathbf{g}_{\alpha}, \mathbf{h}_{1}, \ldots, \mathbf{h}_{\alpha}$ such that

$$
\begin{equation*}
M=\sum_{j=1}^{\alpha} D\left(\mathbf{g}_{j}\right) C(\mathbf{x}, \mathbf{y}) D\left(\mathbf{h}_{j}\right) \tag{1}
\end{equation*}
$$

(Hint: recall that if N has rank α, then $N=\sum_{i=1}^{\alpha} N_{i}$ with N_{i} of rank 1.)
4. Prove conversely that if M is of the form (1), then M has (\mathbf{x}, \mathbf{y})-displacement rank $\leqslant \alpha$.

For the rest of the exercise, we shall say that a matrix with (\mathbf{x}, \mathbf{y})-displacement rank α is represented by (\mathbf{x}, \mathbf{y})-generators of size k if M is given as a pair of vector sequences $\left(\left(\mathbf{g}_{i}\right)_{1 \leqslant i \leqslant \alpha},\left(\mathbf{h}_{i}\right)_{1 \leqslant i \leqslant \alpha}\right) \in\left(K^{\alpha}\right)^{2}$ such that (1) holds. Overall, this means that, when α is small, we have a compact representation for M (of size $O(\alpha n)$), and we might wonder whether we can do basic matrix arithmetic - matrix/vector product, add, multiply, inverse, determinant - using this compact representation (the last two can be done but we'll not study them).
Recall that if M is a Cauchy matrix, and v a vector, you can compute $M v$ using $O(M(n) \log n)$ operations in K.
5. If M is represented by (\mathbf{x}, \mathbf{y})-generators of size α and v is a vector, prove that one can compute $M \cdot v$ in complexity $O(\alpha M(n) \log n)$.
6. If M, M^{\prime} are represented by (\mathbf{x}, \mathbf{y})-generators of size α and α^{\prime}, give ($\left.\mathbf{x}, \mathbf{y}\right)$-generators of size $\alpha+\alpha^{\prime}$ for $M+M^{\prime}$, which can be computed in time $O\left(\left(\alpha+\alpha^{\prime}\right) n\right)$.
7. If M, M^{\prime} are represented by (\mathbf{x}, \mathbf{y})-generators of size α (resp. by ($\left.\mathbf{y}, \mathbf{z}\right)$-generators of size α^{\prime}), give (\mathbf{x}, \mathbf{z})-generators of size $\alpha+\alpha^{\prime}$ for $M \cdot M^{\prime}$, which can be computed in time $O\left(\alpha \alpha^{\prime} M(n) \log n\right)$.

[^0]: ${ }^{1}$ notice that $(-1)^{x}$ is well defined for $x \in \mathbb{Z} / 2 \mathbb{Z}$

