ExERCISES

In all the exercises, unless specified otherwise, we take $P=X^{d}+1$ for d a power-of-two, $K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$.

1 Canonical and coefficient embeddings

In this exercise, we take $P=X^{d}+1$ for d a power-of-two, $K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$.

1. Show that the map from \mathbb{Q}^{d} to \mathbb{C}^{d} sending $\Sigma(a)$ to $\tau(a)$ (for $a \in K$) is a \mathbb{Q}-linear morphism. Exhibit the matrix $M \in \mathrm{GL}_{d}(\mathbb{C})$ such that $\tau(a)=M \cdot \Sigma(a)$ for all $a \in K$.
2. How can we compute $\Sigma(a)$ in polynomial time from $\tau(a)$? (this is equivalent to inverting the map τ, since recovering a from $\Sigma(a)$ is immediate).
3. Show that $M \cdot M^{*}=d \cdot I_{d}$, where $M^{*}=\bar{M}^{T}$.
(Hint 1: you may want to prove first that if $\zeta \in \mathbb{C}$ is a m-th root of unity different from 1 , then $\sum_{i=0}^{m-1} \zeta^{i}=0$)
(Hint 2: to prove Hint 1, you can consider the equality $\left(\sum_{i=0}^{m-1} X^{i}\right) \cdot(X-1)=X^{m}-1$
4. Deduce from the previous question that we also have $M^{*} \cdot M=d \cdot I_{d}$.
5. Conclude that $\|\tau(a)\|=\sqrt{d} \cdot\|\Sigma(a)\|$ for all $a \in K$.

2 Ideal lattices

In this exercise again, we take $P=X^{d}+1$ for d a power-of-two, $K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$.

1. Show that if $a \in K$ is non-zero, then the d vectors $\tau\left(a \cdot X^{i}\right)$ for $i=0$ to $d-1$ are \mathbb{Q}-linearly independent. (Hint: you may want to use the fact that $\sigma: K \rightarrow \mathbb{C}^{d}$ is injective)
2. Show that for any $a, b \in R$ with $a \neq b$, then $\|\tau(a)-\tau(b)\| \geq \sqrt{d}$.
(Hint: you may want to use the fact that $\|\tau(x)\|=\sqrt{d} \cdot\|\Sigma(x)\|$)
3. Conclude that for any non-zero ideal \mathfrak{a}, the set $\tau(\mathfrak{a})$ is a lattice of rank d in \mathbb{C}^{d}.
4. Show that in any non-zero ideal \mathfrak{a}, it holds that $\lambda_{1}(\tau(\mathfrak{a}))=\cdots=\lambda_{d}(\tau(\mathfrak{a}))$.
(Hint: you may want to use question 1 again.)
5. Prove that if one knows a solution to SVP_{γ} in \mathfrak{a}, then one can construct in polynomial time a solution to SIVP_{γ} in \mathfrak{a}.
6. Prove that the reciprocal is also true: if one knows a solution to $\operatorname{SIVP}_{\gamma}$ in \mathfrak{a}, then one can construct in polynomial time a solution to SVP_{γ} in \mathfrak{a}.

3 Albrecht-Deo's reduction

In this exercise again, we take $P=X^{d}+1$ for d a power-of-two, $K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$. All the vectors are by default column vectors.

We will admit that if q is a prime integer and if the a_{i} are sampled uniformly in R_{q}^{n} for some $n>1$, then with overwhelming probability, it suffices to sample a polynomial number of a_{i} 's to be able to extract n of them $a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ such that the matrix whose rows are the $\left(a_{i}^{\prime}\right)^{T}$'s is invertible in R_{q}.

1. Assume that we have access to an oracle computing samples from the distribution $D_{n, q, \chi}^{\mathrm{MLWE}}(s)$ (for some $s \in R_{q}^{n}$), and assume that we have n samples $\left(a_{i}, b_{i}\right) \in R_{q}^{n} \times R_{q}$ from $D_{n, q, \chi}^{\mathrm{MLWE}}(s)$ such that the matrix \bar{A} whose rows are the a_{i} is invertible in R_{q}. Let $b_{i}=\left\langle a_{i}, s\right\rangle+e_{i}$ with $e_{i} \leftarrow \chi$ and let us write $\bar{e}=\left(e_{1}, \ldots, e_{n}\right)^{T}$ and $\bar{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$. Observe that, by definition, we have $\bar{b}=\bar{A} \cdot s+\bar{e}$.
Let $(a, b) \leftarrow D_{n, q, \chi}^{\mathrm{MLWE}}(s)$. Define $a^{\prime}=\bar{A}^{-T} \cdot a$ and $b^{\prime}=\left\langle a^{\prime}, \bar{b}\right\rangle-b$. Show that $\left(a^{\prime}, b^{\prime}\right)$ is a sample from $D_{n, q, \chi}^{\mathrm{MLWE}}(\bar{e})$.
2. Conclude that there is a polynomial time reduction from MLWE $_{n, q, \chi}$ to $\mathrm{HNF}^{-\mathrm{MLWE}_{n, q, \chi} \text {, which is a variant of }}$ MLWE where the secret is sampled from the distribution χ^{n} instead of being chosen uniformly in R_{q}^{n}.
3. Let $e \in R$ be such that $\|\tau(e)\| \leq \beta$ for some $\beta>0$. Let $X=\left\{x \in R \mid\|\Sigma(x)\|_{\infty} \leq \beta^{\prime}\right\}$ and $Y=\left\{x \in R \mid\|\Sigma(x-e)\|_{\infty} \leq \beta^{\prime}\right\}$ for some $\beta^{\prime}>0$ not in \mathbb{Z}. Show that $|X| \leq\left(2 \beta^{\prime}\right)^{d}$ and that $|X \cap Y| \geq\left(2\left(\beta^{\prime}-\beta\right)\right)^{d}$.
4. Let χ^{\prime} be the uniform distribution over $\left\{x \in R \mid\|\Sigma(x)\|_{\infty} \leq \beta^{\prime}\right\}$ where $\beta^{\prime}=\beta \cdot 2^{d+1} d$. Assume that $\beta^{\prime} \notin \mathbb{Z}$, using the previous question, show that the statistical distance between χ^{\prime} and $e+\chi^{\prime}$ is $\leq 2^{-d}$.
5. Conclude the proof of Albrecht-Deo's reduction from the course.

4 Subfields and automorphisms

In this exercise, we take $P=X^{4}+1, K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$.

1. What are the automorphisms of K ? Show that $\operatorname{Gal}(K)$ is isomorphic as a group to $(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z},+)$.
2. Deduce from the previous question that K admits one subfield of degree 1 , three subfields of degree 2 and one subfield of degree 4 .
3. Exhibit a basis for all the subfields from the previous question.

5 Canonical embedding and automorphisms

In this exercise, we take $P=X^{d}+1$ for d a power-of-two, $K=\mathbb{Q}[X] / P(X)$ and $R=\mathbb{Z}[X] / P(X)$. Let ζ be a primitive (2d)-th root of unity in \mathbb{C}, and define, for $i=1$ to d the maps

$$
\begin{aligned}
\sigma_{i}: \quad K & \rightarrow \mathbb{C} \\
a(X) & \mapsto a\left(\zeta^{2 i-1}\right)
\end{aligned}
$$

These maps σ_{i} are called the complex embeddings of K. Recall that the canonical embedding τ of an element $a \in K$ is defined as $\tau(a):=\left(\sigma_{1}(a), \ldots, \sigma_{d}(a)\right) \in \mathbb{C}^{d}$. Let φ be some automorphism of K.

1. Show that for all $i \in\{1, \ldots, d\}$, there exists $k \in\{1, \ldots, d\}$ such that $\sigma_{i} \circ \varphi=\sigma_{k}$.
2. Show that the map $\sigma \mapsto \sigma \circ \varphi$ is actually a permutation over the set of complex embeddings $\left(\sigma_{i}\right)_{1 \leq i \leq d}$.
3. Conclude that for all $a \in K$, it holds that $\|\tau(\varphi(a))\|=\|\tau(a)\|$.

6 Short vectors in special ideals

Let \mathfrak{a} be an ideal of $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$. Let H be its decomposition group (i.e., $H=\{\varphi \in \operatorname{Gal}(K) \mid \varphi(\mathfrak{a})=\mathfrak{a}\}$), and let K_{H} be the fixed field of H (i.e., $K_{H}=\{x \in K \mid \varphi(x)=x, \forall \varphi \in H\}$).

1. Let $x \in \mathfrak{a}$ be non-zero. Define $w_{i}=\operatorname{Tr}_{K / K_{H}}\left(x \cdot X^{i-1}\right)$ for $i \in\{1, \ldots, d\}$. Show that there exists an index i_{0} for which $w_{i_{0}}$ is non-zero.
(Hint: recall from Exercise 2 that the vectors $x \cdot X^{i-1}$ are linearly independent, hence they form $a \mathbb{Q}$-basis of K.)
2. Prove that, for all i, it holds that $\left\|\tau\left(w_{i}\right)\right\| \leq|H| \cdot\|\tau(x)\|$.
(Hint: recall that $\|\tau(y \cdot X)\|=\|\tau(y)\|$ for all $y \in K$.)
3. Show that $w_{i} \in \mathfrak{b}:=\mathfrak{a} \cap K_{H}$ for all i 's.
(Hint: this is where we use that H is the decomposition group of \mathfrak{a}.)
4. Conclude that $\lambda_{1}(\tau(\mathfrak{b})) \leq|H| \cdot \lambda_{1}(\tau(\mathfrak{a}))$.

7 NTRU

For the first 3 questions, assume that $K=\mathbb{Q}$, and that q is a prime integer.

1. Let $(f, g) \in \mathbb{Z}^{2}$ with $(f, g) \neq(0,0)$ and $|f|,|g|<q$. Let $h, h^{\prime} \in \mathbb{Z}$ such that $g h=f \bmod q$ and $g h^{\prime}=f \bmod q$. Show that $h=h^{\prime} \bmod q$.
(Hint: it may be useful to prove that q is invertible modulo q.)
2. Show that for any $B>0$, the number of pairs $(f, g) \in \mathbb{Z}^{2}$ with $|f|,|g| \leq B$ is at most $(2 B+1)^{2}$.
3. Deduce from the previous two questions that for $B<q$, the proportion of $\operatorname{NTRU}_{q, B}$ instances in \mathbb{Z} is $\leq \frac{(2 B+1)^{2}}{q}$. (Hint: observe that if h is an $N T R U_{q, B}$ instance, then any $h^{\prime}=h \bmod q$ is also an $N T R U_{q, B}$ instance, so it suffices to consider the h in $\{0, \ldots, q-1\}$.)

From now on, $K=\mathbb{Q}[X] /\left(X^{d}+1\right)$ as usual, and let $q \geq 5$. Let χ be the uniform distribution over polynomials of $\mathbb{Z}[X] /\left(X^{d}+1\right)$ with coefficients in $\{-1,0,1\}$, and let ψ be the distribution obtained by sampling $f, g \leftarrow \chi$ until g is invertible $\bmod q$, and returning $h=f / g \bmod q$. Note that ψ is a distribution over $\operatorname{NTRU}_{q, B}$ instances for $B=d$ (because $\|\tau(f)\|=\sqrt{ } d \cdot\|\Sigma(f)\| \leq d$ if $f \leftarrow \chi$). Recall that the dec-NTRU q, B, ψ problem asks to distinguish $h \leftarrow \psi$ from $h \leftarrow \mathcal{U}\left(R_{q}\right)$.

1. Show that dec-NTRU ${ }_{q, B, \psi}$ would be easy to solve if we had taken $h=f \bmod q$ instead of $h=f / g \bmod q$.
2. Show that dec-NTRU ${ }_{q, B, \psi}$ would be easy to solve if we had taken $h=1 / g \bmod q$ instead of $h=f / g \bmod q$.
