EXERCISES

In all the exercises, unless specified otherwise, we take $P = X^d + 1$ for d a power-of-two, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$.

1 Canonical and coefficient embeddings

In this exercise, we take $P = X^d + 1$ for d a power-of-two, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$.

- 1. Show that the map from \mathbb{Q}^d to \mathbb{C}^d sending $\Sigma(a)$ to $\tau(a)$ (for $a \in K$) is a \mathbb{Q} -linear morphism. Exhibit the matrix $M \in \operatorname{GL}_d(\mathbb{C})$ such that $\tau(a) = M \cdot \Sigma(a)$ for all $a \in K$.
- 2. How can we compute $\Sigma(a)$ in polynomial time from $\tau(a)$? (this is equivalent to inverting the map τ , since recovering a from $\Sigma(a)$ is immediate).
- 3. Show that $M \cdot M^* = d \cdot I_d$, where $M^* = \overline{M}^T$. (*Hint 1: you may want to prove first that if* $\zeta \in \mathbb{C}$ *is a m-th root of unity different from 1, then* $\sum_{i=0}^{m-1} \zeta^i = 0$) (*Hint 2: to prove Hint 1, you can consider the equality* $(\sum_{i=0}^{m-1} X^i) \cdot (X-1) = X^m - 1$
- 4. Deduce from the previous question that we also have $M^* \cdot M = d \cdot I_d$.
- 5. Conclude that $\|\tau(a)\| = \sqrt{d} \cdot \|\Sigma(a)\|$ for all $a \in K$.

2 Ideal lattices

In this exercise again, we take $P = X^d + 1$ for d a power-of-two, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$.

- 1. Show that if $a \in K$ is non-zero, then the d vectors $\tau(a \cdot X^i)$ for i = 0 to d 1 are \mathbb{Q} -linearly independent. (*Hint: you may want to use the fact that* $\sigma : K \to \mathbb{C}^d$ *is injective*)
- 2. Show that for any $a, b \in R$ with $a \neq b$, then $\|\tau(a) \tau(b)\| \geq \sqrt{d}$. (*Hint: you may want to use the fact that* $\|\tau(x)\| = \sqrt{d} \cdot \|\Sigma(x)\|$)
- 3. Conclude that for any non-zero ideal \mathfrak{a} , the set $\tau(\mathfrak{a})$ is a lattice of rank d in \mathbb{C}^d .
- 4. Show that in any non-zero ideal \mathfrak{a} , it holds that $\lambda_1(\tau(\mathfrak{a})) = \cdots = \lambda_d(\tau(\mathfrak{a}))$. (*Hint: you may want to use question* 1 *again.*)
- 5. Prove that if one knows a solution to SVP_{γ} in \mathfrak{a} , then one can construct in polynomial time a solution to $SIVP_{\gamma}$ in \mathfrak{a} .
- 6. Prove that the reciprocal is also true: if one knows a solution to SIVP_{γ} in \mathfrak{a} , then one can construct in polynomial time a solution to SVP_{γ} in \mathfrak{a} .

3 Albrecht-Deo's reduction

In this exercise again, we take $P = X^d + 1$ for d a power-of-two, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$. All the vectors are by default column vectors.

We will admit that if q is a prime integer and if the a_i are sampled uniformly in \mathbb{R}_q^n for some n > 1, then with overwhelming probability, it suffices to sample a polynomial number of a_i 's to be able to extract n of them a'_1, \ldots, a'_n such that the matrix whose rows are the $(a'_i)^T$'s is invertible in \mathbb{R}_q .

1. Assume that we have access to an oracle computing samples from the distribution $D_{n,q,\chi}^{\text{MLWE}}(s)$ (for some $s \in R_q^n$), and assume that we have n samples $(a_i, b_i) \in R_q^n \times R_q$ from $D_{n,q,\chi}^{\text{MLWE}}(s)$ such that the matrix \overline{A} whose rows are the a_i is invertible in R_q . Let $b_i = \langle a_i, s \rangle + e_i$ with $e_i \leftarrow \chi$ and let us write $\overline{e} = (e_1, \ldots, e_n)^T$ and $\overline{b} = (b_1, \ldots, b_n)^T$. Observe that, by definition, we have $\overline{b} = \overline{A} \cdot s + \overline{e}$.

Let $(a, b) \leftarrow D_{n,q,\chi}^{\text{MLWE}}(s)$. Define $a' = \overline{A}^{-T} \cdot a$ and $b' = \langle a', \overline{b} \rangle - b$. Show that (a', b') is a sample from $D_{n,q,\chi}^{\text{MLWE}}(\overline{e})$.

- 2. Conclude that there is a polynomial time reduction from $MLWE_{n,q,\chi}$ to $HNF-MLWE_{n,q,\chi}$, which is a variant of MLWE where the secret is sampled from the distribution χ^n instead of being chosen uniformly in R_q^n .
- 3. Let $e \in R$ be such that $\|\tau(e)\| \leq \beta$ for some $\beta > 0$. Let $X = \{x \in R \mid \|\Sigma(x)\|_{\infty} \leq \beta'\}$ and $Y = \{x \in R \mid \|\Sigma(x e)\|_{\infty} \leq \beta'\}$ for some $\beta' > 0$ not in \mathbb{Z} . Show that $|X| \leq (2\beta')^d$ and that $|X \cap Y| \geq (2(\beta' \beta))^d$.
- 4. Let χ' be the uniform distribution over $\{x \in R \mid \|\Sigma(x)\|_{\infty} \leq \beta'\}$ where $\beta' = \beta \cdot 2^{d+1}d$. Assume that $\beta' \notin \mathbb{Z}$, using the previous question, show that the statistical distance between χ' and $e + \chi'$ is $\leq 2^{-d}$.
- 5. Conclude the proof of Albrecht-Deo's reduction from the course.

4 Subfields and automorphisms

In this exercise, we take $P = X^4 + 1$, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$.

- 1. What are the automorphisms of K? Show that Gal(K) is isomorphic as a group to $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, +)$.
- 2. Deduce from the previous question that K admits one subfield of degree 1, three subfields of degree 2 and one subfield of degree 4.
- 3. Exhibit a basis for all the subfields from the previous question.

5 Canonical embedding and automorphisms

In this exercise, we take $P = X^d + 1$ for d a power-of-two, $K = \mathbb{Q}[X]/P(X)$ and $R = \mathbb{Z}[X]/P(X)$. Let ζ be a primitive (2d)-th root of unity in \mathbb{C} , and define, for i = 1 to d the maps

$$\sigma_i: \quad K \to \mathbb{C}$$
$$a(X) \mapsto a(\zeta^{2i-1})$$

These maps σ_i are called the complex embeddings of K. Recall that the canonical embedding τ of an element $a \in K$ is defined as $\tau(a) := (\sigma_1(a), \ldots, \sigma_d(a)) \in \mathbb{C}^d$. Let φ be some automorphism of K.

- 1. Show that for all $i \in \{1, ..., d\}$, there exists $k \in \{1, ..., d\}$ such that $\sigma_i \circ \varphi = \sigma_k$.
- 2. Show that the map $\sigma \mapsto \sigma \circ \varphi$ is actually a permutation over the set of complex embeddings $(\sigma_i)_{1 \le i \le d}$.

3. Conclude that for all $a \in K$, it holds that $\|\tau(\varphi(a))\| = \|\tau(a)\|$.

6 Short vectors in special ideals

Let \mathfrak{a} be an ideal of $K = \mathbb{Q}[X]/(X^d + 1)$. Let H be its decomposition group (i.e., $H = \{\varphi \in \operatorname{Gal}(K) | \varphi(\mathfrak{a}) = \mathfrak{a}\}$), and let K_H be the fixed field of H (i.e., $K_H = \{x \in K | \varphi(x) = x, \forall \varphi \in H\}$).

- Let x ∈ a be non-zero. Define w_i = Tr_{K/KH}(x · Xⁱ⁻¹) for i ∈ {1,...,d}. Show that there exists an index i₀ for which w_{i0} is non-zero.
 (*Hint: recall from Exercise 2 that the vectors x* · Xⁱ⁻¹ are linearly independent, hence they form a Q-basis of K.)
- 2. Prove that, for all *i*, it holds that $\|\tau(w_i)\| \le |H| \cdot \|\tau(x)\|$. (*Hint: recall that* $\|\tau(y \cdot X)\| = \|\tau(y)\|$ for all $y \in K$.)
- 3. Show that $w_i \in \mathfrak{b} := \mathfrak{a} \cap K_H$ for all *i*'s. (*Hint: this is where we use that* H *is the decomposition group of* \mathfrak{a} .)
- 4. Conclude that $\lambda_1(\tau(\mathfrak{b})) \leq |H| \cdot \lambda_1(\tau(\mathfrak{a}))$.

7 NTRU

For the first 3 questions, assume that $K = \mathbb{Q}$, and that q is a prime integer.

- Let (f, g) ∈ Z² with (f, g) ≠ (0, 0) and |f|, |g| < q. Let h, h' ∈ Z such that gh = f mod q and gh' = f mod q.
 Show that h = h' mod q.
 (*Hint: it may be useful to prove that q is invertible modulo q.*)
- 2. Show that for any B > 0, the number of pairs $(f, g) \in \mathbb{Z}^2$ with $|f|, |g| \leq B$ is at most $(2B+1)^2$.
- 3. Deduce from the previous two questions that for B < q, the proportion of $\text{NTRU}_{q,B}$ instances in \mathbb{Z} is $\leq \frac{(2B+1)^2}{q}$. (*Hint: observe that if h is an NTRU*_{q,B} *instance, then any h' = h mod q is also an NTRU*_{q,B} *instance, so it suffices to consider the h in* $\{0, \ldots, q-1\}$.)

From now on, $K = \mathbb{Q}[X]/(X^d + 1)$ as usual, and let $q \ge 5$. Let χ be the uniform distribution over polynomials of $\mathbb{Z}[X]/(X^d + 1)$ with coefficients in $\{-1, 0, 1\}$, and let ψ be the distribution obtained by sampling $f, g \leftarrow \chi$ until g is invertible mod q, and returning $h = f/g \mod q$. Note that ψ is a distribution over NTRU_{q,B} instances for B = d(because $\|\tau(f)\| = \sqrt{d} \cdot \|\Sigma(f)\| \le d$ if $f \leftarrow \chi$). Recall that the dec-NTRU_{q,B,ψ} problem asks to distinguish $h \leftarrow \psi$ from $h \leftarrow \mathcal{U}(R_q)$.

- 1. Show that dec-NTRU_{q,B, ψ} would be easy to solve if we had taken $h = f \mod q$ instead of $h = f/g \mod q$.
- 2. Show that dec-NTRU_{q,B, ψ} would be easy to solve if we had taken $h = 1/g \mod q$ instead of $h = f/g \mod q$.