
LATTICE-BASED CRYPTOGRAPHY CIMPA SCHOOL IN DOUALA – JULY 2024

EXERCISES

The exercises 1 to 7 in this sheet are the most interesting ones and should be prioritized. Exercises 8 to 11 are
more advanced, and are targeted for students who already have some knowledge about lattices, and want to learn
more.

Exercises 1 to 4, and advanced exercises 7, 8, 10 can be done after the first lecture. Exercise 5 can be done after
the second lecture, and maybe exercise 6 too (if we go fast enough), exercise 7 can be done after the third lecture,
and exercise 10 can be done after the fourth lecture.

1 Lattice bases (⋆)

The objective of this exercise is to prove a bunch of properties regarding bases of lattices. Throughout this exercise,
the matrix B (or the matrices B1, B2) are invertible matrices in GLn(R) for some dimension n > 0. Recall that we
write L(B) for the lattice spanned by the columns of the matrix B.

1. Let B1, B2 ∈ GLn(R). Show that L(B1) = L(B2) if and only if B1 = B2 · U for some U ∈ Zn×n such that
det(U) = ±1. Such a matrix U is called unimodular. It is an invertible integer matrix whose inverse is also an
integer matrix.

A: Assume first that L(B1) = L(B2). Then, every column of B1 belongs to L(B1) = L(B2). Hence, by definition of the
lattice L(B2) (integer linear combinations of the columns of B2), we know that there exists an integer square matrix U1

such that B1 = B2 · U1. Since B1 and B2 are both invertible, then U1 is also invertible (over R). Our objective is to show
that U1 is invertible over Z (i.e., it’s inverse is also an integer matrix). By a similar argument, we know that there exist an
invertible (over R) integer matrix U2 such that B2 = B1 · U2.

Combining both equations, we obtain B1 = B2 · U1 = B1 · U2 · U1. Since B1 is invertible, we can simplify this into
In = U2 · U1. Since U1 and U2 are invertible over R, their inverse is unique and we conclude that U−1

1 = U2 is an integer
matrix as desired.

To conclude, observe that since U1 and U2 are integer matrices, then their determinant is also an integer. But we have
1 = det(In) = det(U1 · U2) = det(U1) · det(U2). Hence, the only possibility for det(U1) is 1 or −1 (these are the only
invertible elements in Z).

In the other direction, assume that B1 = B2 · U with U integer and det(U) = ±1. Then, U is invertible over R and its
inverse matrix U−1 has integer coefficients (recall that U−1 = 1/ det(U) · adj(U) where the adjugate matrix adj(U) is
integral since U is).

Since U is integral, then by definition every column of B1 = B2 · U is in the lattice spanned by B2. Hence we have
L(B1) ⊆ L(B2). Since U−1 is also integral, then every column of B2 = B1 · U−1 is in the lattice spanned by B1, and we
conclude that L(B2) ⊆ L(B1).

2. Let B1 and B2 be two bases of the same lattice L. Prove that |det(B1)| = | det(B2)|.
This shows that the quantity | det(B)| does not depend on the choice of the basis B of L, but only on the lattice
L. It is usually called the volume or the determinant of the lattice L, and written vol(L) or det(L).

A: We have seen in the previous questions that if L(B1) = L(B2), then B1 = B2 ·U for some matrix U with det(U) = ±1.
Taking the absolute value of the determinant of this equation proves that |det(B1)| = |det(B2)|.

3. Let L1 and L2 be two lattices of rank n. Show that if L1 ⊆ L2, then det(L1) = k · det(L2) for some integer
k > 0. This integer k is called the index of L1 inside L2 and is written [L2 : L1].
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A: Let B1 be a basis of L1 and B2 be a basis of L2. Since L1 ⊆ L2, then every column of B1 is in L(B2), i.e., there
is an integer matrix X such that B1 = B2 · X . Taking the determinant, we have det(B1) = det(B2) · det(X). Hence,
k = |det(X)| and k is indeed an integer since X has integer coefficients (and k is non-zero since B1 and B2 are both
invertible).

The determinant of a lattice is an important quantity, mostly useful in cryptography thanks to Minkowski’s first
theorem. This theorem states that in any lattice L of dimension n, there exists a non-zero vector v ∈ L such that
∥v∥ ≤

√
n · det(L)1/n.

4. Show that the upper bound in Minkowski’s first theorem can be quite loose for some lattices: construct a lattice
with det(L) = 1 and which contains a non-zero vector v whose euclidean norm is arbitrarily close to 0.

A: Take ε > 0 and define L to be the lattice with basis b1 = (ε, 0)T and b2 = (0, ε−1)T . Then det(L) = 1 but L contains
the vector b1 whose norm can be arbitrarily close to 0.

The objective of the next questions is to observe that when dealing with lattices, a maximal set of independent
vectors is not always a basis, and a minimal set of generating vectors is also not always a basis (which differs
from what we are used to in vector spaces).

5. Exhibit a family of n linearly independent vectors in Zn which do not form a Z-basis of Zn.

A: One example is the family bi = (0, . . . , 0, 2, 0, . . . , 0) with a 2 in i-th position, for i = 1 to n. Those vectors are linearly
independent but they generate the lattice (2Z)n, which is included strictly in Zn. Note that one cannot add a vector to
this family of vectors and still have independent vectors (because independence is defined over R, where things work as
expected: the maximal size of an independent set of vectors in Rn is n).

6. Exhibit a family of n+ 1 vectors generating Zn such that it is not possible to remove any vector from this set to
obtain a Z-basis of Zn.

A: Take b0 = (2, 0, . . . , 0), b1 = (3, 0, . . . , 0) and bi = (0, . . . , 0, 1, 0, . . . , 0) with a i at the i-th position for i = 2 to n.
Then (bi)0≤i≤n generates Zn. This is because 2 and 3 are coprime, hence one can find an integer linear combination of b1
and b2 with a 1 in its first coordinate (just take b1 − b0 = (1, 0, . . . , 0)).

However, one can check that removing b0 or b1 from the list of generator does not generate Zn anymore: the first coordinate
will always be a multiple of 2 or 3. Similarly, we cannot remove one of the bi for i ≥ 2 since the i-th coordinate would
always be 0.

7. Compute a basis for the lattice generated by c1 = (2π, 4)T , c2 = (0, 3)T and c3 = (4π, 4)T . Same question for
c1 = (1, 0)T , c2 = (1, 1)T and c3 = (1, π)T . (⋆⋆)
(Hint: the question might be lying to you. In this case, show what is wrong in the question. :) ).

A: A basis for the first lattice is given by b1 = (2π, 0)T and b2 = (0, 1)T . A way to check that this is indeed a basis of the
lattice generated by c1, c2 and c3 is to check that each of the bi is in the Z-span of the ci-s (note: b2 = 2c1 − c3 − c2 and
b1 = c1− 4b2) and that reciprocally each of the ci is in the Z-span of the bi’s. This shows that the bi an the ci generates the
same lattice. Then observe that the bi are 2 linearly independent vectors in R2 hence they form a basis of their lattice.

For the second example, it turns out that the Z-span of c1, c2 and c3 is not a lattice. A way to see this is that a lattice
must be discrete (see the alternative definition in Section ??). But the Z-span of c1, c2 and c3 is not discrete. Indeed, we
have (0, 1)T and (0, π)T in the Z-span. Since π is not a rational number, we can create a vector (0, ε)T with ε as small
as we want by taking integer linear combinations of those two vectors. This shows that the Z-span of the ci contains an
accumulation point at 0, and so it is not a lattice.
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2 HNF basis (⋆⋆)

In this exercise, we will see how to compute a special basis of a lattice L, called the HNF basis of L. The main
advantage of this basis is that it can be computed in polynomial time from any basis of L, hence, it is a “worst
possible” basis: revealing this basis does not leak more information on L than what any other basis would leak.

The algorithm to compute the HNF basis is very similar to the way one would use Gaussian elimination to
compute the echelon form of matrices over a field. The main difference is that since we are only allowed to perform
integer linear combinations over the vectors of our basis, we cannot multiply by the inverse of a coefficient, in order
to annihilate the other coefficients on the same row.

1. Let’s review Gaussian elimination a little. Run Gaussian elimination (over R) on the columns of the matrix

M =

(
2 3
3 4

)
in order to obtain a triangular matrix of the form

(
∗ 0
∗ ∗

)
. (Here, running Gaussian elimination

on the columns means that you are only allowed to perform operations on the columns of the matrix. Said
differently, you can only multiply M by invertible matrices on the right).

A: In order to obtain a 0 on the top-right part of the matrix, we perform the operation C2 ← C2 − 3/2 · C1 (where C1 and

C2 are the columns of the matrix M ). This corresponds to multiplication on the right by the matrix
(
1 −3/2
0 1

)
. We then

obtain the matrix
(
2 0
3 −1/2

)
, which has the desired shape.

2. In the previous question, the operations we performed on the columns were not integer. We now want to focus
on integer operations on the columns of M . Show that there exists an integer matrix U with determinant 1 such

that M · U =

(
1 ∗
∗ ∗

)
.

A: The matrix U =

(
−1 0
1 −1

)
has integral coefficient, determinant 1 and satisfies M · U =

(
2 3
3 4

)
·
(
−1 0
1 −1

)
=(

1 −3
1 −4

)
as desired.

3. More generally, show that for any matrix M =

(
a b
c d

)
there is a unimodular matrix U such that M · U =(

gcd(a, b) ∗
∗ ∗

)
. (⋆⋆)

A: We know by Bézout’s identity that there exists u, v integers such that au+ bv = gcd(a, b). Moreover, this equality also
shows that such u and v must be coprime, since gcd(a, b) already divides a and b. Hence, applying Bézout’s identity once

more to u and v, we have x and y such that ux+ vy = 1. Take the matrix U =

(
u −y
v x

)
. The first column of this matrix

is constructed such that the top-left coefficient of M · U is equal to au+ bv = gcd(a, b). The second column of the matrix
is added so that the matrix U has determinant 1 (so that it is invertible over Z). This is ensured by the second Bézout’s
identity, which shows that det(U) = ux+ yv = 1, i.e., U is unimodular.

4. Using the previous question, show that for any matrix M =

(
a b
c d

)
there is a unimodular matrix U such that

M · U =

(
gcd(a, b) 0
∗ ∗

)
.
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A: Once we have applied the unimodular matrix U from the previous question, we obtain a basis of the form(
gcd(a, b) z
∗ ∗

)
. Moreover, we know that z must be a multiple of gcd(a, b), since it is an integer linear combination

of a and b (all top coefficient of vectors in L(M) must be integer linear combinations of a and b). Hence, from now on, we
can use regular Gaussian elimination and perform C2 ← C2− z/ gcd(a, b)C1 to annihilate the top-right coefficient (where
C1 and C2 are the columns of the matrix M · U ). This operation is obtained by multiplying on the right by the matrix

U ′ =

(
1 −z/ gcd(a, b)
0 1

)
which is integer and unimodular as desired.

5. Compute a matrix U as in the previous question for M =

(
9 2
3 1

)
.

A: U =

(
−1 −2
5 9

)
which gives M · U =

(
1 0
2 3

)

6. Let M1 =

2 1 0
8 1 4
0 1 7

. Generalize the algorithm from the previous questions to compute a matrix M2 such that

M2 = M1 · U for some unimodular matrix U and M2 is of the form M2 =

∗ 0 0
∗ ∗ 0
∗ ∗ ∗

.

A: U =

0 −1 −2
1 2 4
0 2 3

 and M2 = M1 · U =

1 0 0
1 2 0
1 16 25



7. Let L be a lattice of dimension n. Show that there is a unique basis B of L such that bi,j = 0 when j > i,
bi,i > 0 and 0 ≤ bi,j < bi,i for j < i. This is the basis which is called the Hermite normal form (HNF) basis of
L. (⋆⋆)

A: First, observe that the algorithm that we described in the previous question provides an algorithmic proof that such a
basis exists (the condition that bi,j ∈ [0, bi,i) for j < i is ensured by reducing the non-diagonal coefficients modulo the
diagonal coefficients, from top to bottom).

Let us now prove that such a basis is unique. Assume for a contradiction that there exists two such bases B and C, with
columns bj and cj . Let j0 be maximal such that bj0 ̸= cj0 . Since B and C span the same lattice, then bj0 is an integer linear
combination of the vectors (cj)1≤j≤n. Moreover, because of the special shape of C and since the top coefficients of bj0 are
0, then is must be that bj0 is a combination of the columns cj for j ≥ j0. This implies that the diagonal coefficient bj0,j0
is an integer multiple of cj0,j0 . But a similar argument shows that cj0,j0 is an integer multiple of bj0,j0 , hence we conclude
that |bj0,j0 | = |cj0,j0 |. Since both are positive by assumption, we conclude that bj0,j0 = cj0,j0 .

From this, we know that bj0 = cj0 +
∑

j>j0
aj ·cj for some integers aj’s. However, we know that cj = bj for any j > j0 by

choice of j0, which means that the diagonal coefficients bj,j and cj,j are the same for j > j0. We also know that the bottom
coefficients of both bj0 and cj0 are reduced modulo those diagonal coefficients cj,j = bj,j . Hence, a recursive argument
shows that aj must be equal to 0 for all j > j0, and we conclude that bj0 = cj0 , which is a contradiction.

3 LWE and SIS lattices (⋆⋆)

Let q ,m ≥ r > 0 be integers and A ∈ Zm×r
q . Recall that the SIS lattice associated to A is defined by

Λ⊥(A) := {x ∈ Zm |xT · A = 0 mod q}. Recall similarly that the LWE lattice associated to A is Λ(A) :=
{x ∈ Zm | ∃s ∈ Zn s.t. As = x mod q}.
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1. Show that Λ(A) is generated by the columns of A and the m vectors q · ei (with 1 ≤ i ≤ m), where ei is the
vector with a 1 at the i-th position and 0’s everywhere else.

A: First, one can check that Λ(A) indeed contains the column vectors of A (take s = (0, . . . , 0, 1, 0, . . . , 0) in the definition
of Λ(A)) and the m vectors q · ei (take s = 0).

Let us then show the reverse inclusion. Let x ∈ Λ(A). By definition, there must exist a vector s ∈ Zr and z ∈ Zm such
that x = A · s+ q · z. This shows that x is an integer linear combination of the columns of A and the q · ei vectors. Hence,
those vectors indeed generate the lattice Λ(A).

2. Assume that q is prime. Using the previous question, exhibit a set of generating vectors for the lattice Λ⊥(A).
(Hint: you might want to show that Λ⊥(A) = Λ(B) for some well chosen matrix B).

A: Let B ∈ Zm×k be a basis (in columns) of the left kernel of A modulo q, i.e., BT · A = 0 mod q (here, we use the
fact that q is prime so that Zq is a field and the kernel of A is a vector space). We know that k ≥ m − r, but it could be
bigger if the rank of A modulo q is < r. We have that x ∈ Λ⊥(A) if and only if xT · A = 0 mod q, which is equivalent
to x belongs to the span of the columns of B modulo q, i.e., x ∈ Λ(B). Using the previous question, we conclude that the
column vectors of B together with the q · ei vectors form a generating set of Λ⊥(A).

3. Assume again that q is prime. Assume also that the rank of A modulo q is r (i.e., the r column vectors of A
are linearly independent modulo q). Show that up to permuting the rows of A (i.e., permuting the coefficients

of the vectors in Λ(A)), there exists a basis of Λ(A) of the form
(
Ir 0n×(m−r)
A′ q · Im−r

)
, for some integer matrix

A′ ∈ Z(m−r)×r. (⋆⋆)

Similarly, show that up to permuting the rows of A, there exists a basis of Λ⊥(A) of the form
(
Im−r 0(m−r)×r
B′ q · Ir

)
,

for some integer matrix B′ ∈ Zr×(m−r).

A: First, observe that by definition of Λ(A), the lattice only depends on the span over Zq of the columns of A, and not the
actual choice of the basis A. Also, since the rank of the columns of A is r, then up to permuting the rows of A, we can

assume that A =

(
A1

A2

)
with A1 ∈ Zr×r invertible modulo q.

Hence, we have Λ(A) = Λ(A ·A−1
1 ), where A ·A−1

1 =

(
Ir
A′

)
, with A′ = A2 ·A−1

1 .

By a previous question, we know that the columns of Ã :=

(
Ir
A′

)
together with the q · ei vectors generate the lattice Λ(A).

Observe now that because of the special shape of Ã, the first r vectors q · ei are already in the span of the columns of Ã and
the other q · ej vectors for j > r (for i ≤ r, the vector q · ei can be obtained by multiplying the i-th column of Ã by q and
annihilating the bottom m − r coordinates using the q · ej with j > r since those coordinates will be integer multiples of
q).

Hence, the r column vectors of A together with the (m − r) vectors qej for j > r generate the lattice Λ(A). Since those
are exactly m vectors, they form a basis of the lattice, with the desired shape.

Regarding Λ⊥(A), we have already seen in a previous question that this lattice is equal to Λ(B) where B forms a basis of
the kernel of A. Since A has rank r modulo q, then we know that B has dimension m× (m− r) and rank m− r modulo q.
Applying what we have done above to the matrix B solves the second part of the question.

4. Assuming that q is prime and that A has rank n modulo q, show that the SIS lattice Λ⊥(A) contains a non-zero
vector of norm≤

√
m · qr/m and that the LWE lattice Λ(A) contains a non-zero vector of norm≤

√
m · q1−r/m.
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A: From the previous question, we know that det(Λ(A)) = qm−r and det(Λ⊥(A)) ≤ qr (permuting the coefficients of
the vectors does not change the volume of the lattices). The shortness of the vectors then follows from Minkowski’s first
theorem.

4 Solving the closest vector problem (⋆)

Babai’s round-off algorithm solves the approximate closest vector problem as follows. Given as input a basis
(bi)1≤i≤n of the lattice L (of dimension n) and a target t, the algorithm writes t =

∑n
i=1 tibi with ti ∈ R and

output the vector s =
∑

i⌈ti⌋bi.

1. Show that Babai’s round-off algorithm finds a point s ∈ L such that ∥t− s∥ ≤ 1/2 · n ·maxi ∥bi∥.

A: Since the ⌈ti⌋’s are integers, then s belongs indeed to the lattice L.

Let us now compute the distance to t. For x ∈ R, we write {x} = x−⌈x⌋ the fractional part of x. It belongs to [−1/2, 1/2].

∥s− t∥ = ∥
∑
i

{ti} · bi∥

≤
∑
i

|{ti}| · ∥bi∥

≤ 1/2 · n ·max
i
∥bi∥.

5 Finding a short vector in a lattice of dimension 2 (⋆ ⋆ ⋆)

The objective of this exercise is to compute a shortest non-zero vector in the lattice L spanned by the basis (in

columns)
(

1 0
402 1 009

)
.

1. Compute a shortest possible basis of L using the Lagrange-Gauss algorithm (see the video). You can use a
calculator for the computation of square roots, or even SageMath to compute directly the QR-factorization of
your matrices. (⋆ ⋆ ⋆)
(Note: computing QR-factorization is not really important in Lagrange-Gauss algorithm. You can actually run
the algorithm without this, and manipulate only integers and rational numbers. Given two vectors b1 and b2,
you want to reduce b2 as much as possible by adding to it an integer multiple of b1 (i.e., you want to update
b2 ← b2 + kb1 for some k ∈ Z that minimizes the length of the new vector). The optimal choice of k is
k = −

⌊
⟨b1,b2⟩/⟨b1,b1⟩

⌉
. Why? (make a picture))

A: Let b0 and b1 be the two initial basis vectors
(
1
h

)
and

(
0
q

)
. We will try to avoid computing QR-factorization (which

would imply manipulating real numbers and so more difficult computations by hand) of the Lagrange-Gauss algorithm.
The key point is that the QR-factorization in Lagrange-Gauss is used for convenience, but it is not really necessary. The
important step is the reduction step. In this step, we want to update b1 ← b1 + k · b0 and make the new b1 as small as
possible. Removing b0 to b1 will not change the projection of b1 orthogonally to b0. But it can reduce the orthogonal
projection of b1 onto b0. In other words, we want to find k that minimizes the inner product ⟨b0,b1+ kb0⟩. Let’s develop
the computation

⟨b0,b1 + kb0⟩ = ⟨b0,b1⟩+ k⟨b0,b0⟩
= 402× 1009 + k(1 + 4022)

= 405618 + k × 161605.
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Finding an integer k that minimizes this sum is exactly performing the (centered) Euclidean division of −405618 by
161605. Put differently, we can find k by dividing −405618 by 161605 and rounding to the closest integer. We obtain
k = −3.

So we want to update b1 by replacing it by b1 − 3b0 =

(
−3
−197

)
. We then swap b0 and b1, and we start again with our

new vectors b0 =

(
−3
−197

)
and b1 =

(
1
402

)
.

Let’s find k that minimizes

⟨b0,b1 + kb0⟩ = ⟨b0,b1⟩+ k⟨b0,b0⟩ = −79197 + k × 38818.

We have that k = ⌊79197/38818⌉ = 2, and so we update b1 ← b1 + 2b0 =

(
−5
8

)
.

Now we swap b0 and b1 and we start again with b0 =

(
−5
8

)
and b1 =

(
−3
−197

)
. We take k = ⌊−⟨b0,b1⟩/⟨b0,b0⟩⌉ =

⌊1561/89⌉ = 18 and we obtain b1 ← b1 + 18 · b0 =

(
−93
−53

)
.

Let’s swap b1 and b0 and do a last iteration with b0 =

(
−93
−53

)
and b1 =

(
−5
8

)
. This time, we have k = ⌊41/11458⌉ = 0.

So we cannot reduce b1 anymore, we have reached an optimal basis.

We conclude that a shortest basis of Lh is given (in columns) by
(
−5 −93
8 −53

)
.

2. You can check with SageMath that your short basis is indeed a shortest basis, by running the commands

B = Matrix(ZZ,2,[1, 402, 0, 1009])
B_red = B.LLL()
print(B_red.transpose())

in SageMath. Note that SageMath use row convention for matrices, which is why we provided it with a matrix B
which is the transpose of our Bh above, and which is why we transpose the output before printing it.

A: The LLL algorithm from SageMath (version 9.5) produces the same reduced basis
(
−5 −93
8 −53

)
. (Note that the shortest

basis is not unique: we can always permute columns or multiply some column by −1).

6 LWE is a BDD problem (⋆⋆)

In this exercise, we will fix an LWE instance (A, b), with a prime modulus q, with A ∈ (Z/qZ)m×n (where
m ≥ n > 0 are integers), and with b = A · s + e mod q for some secret s ∈ (Z/qZ)n and e ∈ Zm satisfying
∥e∥ ≤ B (for some bound B > 0). We will show that, under some conditions on the parameters B, q,m and n, it is
possible to recover the secret s by solving a BDD instance in the lattice L := Λ(A) from Exercise 3 (hence the name
“LWE lattice”).1

1. Let t ∈ Zm be any lift of b in Zm (i.e., t mod q = b). Show that there exists a vector v0 ∈ L such that
∥v0 − t∥2 ≤ B. Show also that if one recovers v0, then one can recover the secret s of the LWE instance.

1More precisely, this will be possible with overwhelming probability over the random choice of A.
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A: Let v0 = t − e ∈ Zm. We have that v0 ≡ b − e ≡ As mod q, hence, v0 ∈ Λ(A) by definition of Λ(A). Moreover,
∥v0− t∥2 = ∥e∥2 ≤ B by assumption on e. If one recovers v0 = As mod q, then using Gauss pivoting (in the field Z/qZ),
one can recover s from v0 and A in polynomial time, and hence, solve the LWE instance. Note that if the rank of A is
< n, s may not be unique, in which case the algorithm will recover one possible s. This is not really an issue because any
such s would be a solution to the LWE instance, and so in practice it would be sufficient to recover one such s to break
cryptosystems. Moreover, we will see with the next questions that s is unique with overwhelming probability over the
random choice of A.

To prove that s can be recovered by solving a BDD instance in L, is then “only” remains to prove that
B ≤ 1/γ · λ1(L) for some γ > 2 (this is actually the hardest part of the proof): this will prove that t is a
γ-BDD instance in L, with closest vector v0, and so solving BDD in L with target t will recover v0 and hence
we can obtain the secret s.

In Exercise 3, we have shown that λ1(L) ≤
√
m · q1−n/m (when A has rank n). The next questions will be

devoted to the proof that this bound is close to optimal (with overwhelming probability over the random choice
of A). Recall that we asked that q is prime.

2. Let ρ ∈ (0, q) be some bound, and write Bρ the m-dimensional euclidean ball centered in 0 and of radius ρ.
Show that

PrA
(
λ1(Λ(A)) ≤ ρ

)
≤

∑
y∈Bρ∩Zm

x∈(Z/qZ)n\{0}

PrA
(
Ax = y mod q

)
,

where A is sampled uniformly at random in (Z/qZ)m×n.
(Hint: you may want to use a union bound)

A: By definition of Λ(A), we know that λ1(Λ(A)) ≤ ρ if and only if there exists y ∈ Zm with y ̸= 0 and ∥y∥ ≤ ρ and
x ∈ (Z/qZ)n such that y = Ax mod q. Since ρ < q and 0 < ∥y∥ ≤ ρ, it must be that y ̸= 0 mod q. Hence, it must also
be that x ∈ (Z/qZ)n \ {0}. This implies that

PrA
(
λ1(Λ(A)) ≤ ρ

)
= PrA

(
∃y ∈ (Bρ ∩ Zm) \ {0}, ∃x ∈ (Z/qZ)n \ {0} | y = Ax mod q

)
≤

∑
y∈(Bρ∩Zm)\{0}
x∈(Z/qZ)n\{0}

PrA
(
y = Ax mod q

)
,

where the last inequality follows from the union bound.

3. Show that for any x ∈ (Z/qZ)n \ {0} and y ∈ Zm fixed, it holds that PrA
(
Ax = y mod q

)
= q−m.

(Hint: this is where you use that q is prime)

A: Let us write ai the rows of the matrix A and yi the coefficients of y. Since A is sampled uniformly at random, its rows
are also uniform in (Z/qZ)n and independent. Hence, it holds that

PrA
(
Ax = y mod q

)
=

m∏
i=1

PrA
(
⟨ai, x⟩ = yi mod q).

Since x ̸= 0, there must be some index ℓ ∈ [1, n] such that xℓ ̸= 0. Since q is prime, then xℓ must be invertible modulo q.
Hence, if we write ai,j the coefficients of the vector ai, we see that

⟨ai, x⟩ = yi ⇐⇒ ai,ℓxℓ = yi −
∑
j ̸=ℓ

ai,jxj ⇐⇒ ai,ℓ = x−1
ℓ · (yi −

∑
j ̸=ℓ

ai,jxj).

But ai,ℓ is uniform in Z/qZ and independent from the other ai,j’s, hence we conclude that PrA
(
ai,ℓ = x−1

ℓ (yi −∑
j ̸=ℓ ai,jxj)

)
= 1/q. Taking the product over all i’s leads to PrA

(
Ax = y mod q

)
= (1/q)m as desired.
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4. Conclude that
PrA

(
λ1(Λ(A)) ≤ ρ

)
≤ |Bρ ∩ Zm| · qn−m.

A: Combining the two previous questions we have

PrA
(
λ1(Λ(A)) ≤ ρ

)
≤

∑
y∈Bρ∩Zm

x∈(Z/qZ)n\{0}

PrA
(
Ax = y mod q

)
=

∑
y∈Bρ∩Zm

x∈(Z/qZ)n\{0}

q−m

= |Bρ ∩ Zm| · qn · q−m,

as desired.

5. Show that |Bρ ∩ Zm| ≤ (2ρ+ 1)m.
(Hint: the ball Bρ is contained in B∞ρ := {z ∈ Rm | ∥z∥∞ ≤ ρ}).

A: Note that for any x ∈ Rm, we have that ∥x∥∞ ≤ ∥x∥2. Hence, if x ∈ Bρ, we have that ∥x∥∞ ≤ ∥x∥2 ≤ ρ and so
x ∈ B∞ρ : the hint is correct. This implies that |Bρ ∩ Zm| ≤ |B∞ρ ∩ Zm|. Counting the number of points in B∞ρ ∩ Zm is
easier: we want the x ∈ Zm such that |xi| ≤ ρ for all coordinates xi of x. We have at most (2ρ + 1) possible choice for
each xi, i.e., at most (2ρ+ 1)m choices for x.

6. Assume that m, n and q satisfy q1−n/m ≥ 4 (e.g., if m ≥ 2n and q ≥ 16). Conclude that

PrA

(
λ1(Λ(A)) ≤ q1−n/m

4
− 1

)
≤ 2−m.

A: Combining the previous two questions, we see that

PrA
(
λ1(Λ(A)) ≤ ρ

)
≤ (2ρ+ 1)m · qn−m.

Instantiating this equation with ρ = q1−n/m

4 − 1, we see that the upper bound becomes

(2ρ+ 1)m · qn−m =
(q1−n/m

2

)m

· qn−m

=
qm−n

2m
· qn−m = 2−m.

Remark: there is a gap of the order of O(
√
m) between the upper bound on λ1(L) from exercise 3 and the

lower bound we just proved. This gap can be reduced by being more careful when upper bounding the quantity
|Bρ ∩ Zm|.

7. Conclude that if q1−n/m ≥ 16 ·B (e.g., if q ≥ 216, B =
√
q and m ≥ 4n), then with probability at least 1−2−m

over the choice of A, it is possible to solve the LWE instance (A, b) by solving a γ-BDD instance in the lattice
L := Λ(A) with γ = q1−n/m

8B .

A: Let q1−n/m ≥ 16 · B. The previous question shows that, with probability at least 1 − 2−m over the choice of A, it
holds that λ1(Λ(A)) ≥ q1−n/m

4 − 1 ≥ 4B− 1. Moreover, we can assume without loss of generality that B ≥ 1 (otherwise,
∥e∥ ≤ B < 1 and so we must have e = 0 since it has integer coordinates). Hence, we have 4B− 1 > 2B. We have seen in
question 1 that one could solve the LWE instance by recovering the lattice point v0 ∈ Λ(A) which is at distance ≤ B from
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the target t. We have just seen that B < λ1(Λ(A))/2, hence this is a BDD instance (and v0 is unique). The approximation
factor γ is this BDD instance is

γ = ∥t− v0∥−1
2 · λ1(Λ(A))

≥ B−1 ·
(q1−n/m

4
− 1

)
≥ B−1 · q

1−n/m

8
=

q1−n/m

8B
.

7 Hashing with SIS (⋆⋆)

The objective of this exercise is to study a construction of a collision resistant hash function based on SIS.

Let F be a family of functions from a set X to a set Y (which we will call “hash functions”, but really they are just
functions) and let DF be a distribution over this set of functions.

Definition: The advantage of a probabilistic polynomial time (p.p.t.) algorithm A against the collision resistance of
the family of hash functions (F,DF ) is defined as

AdvF (A) := Prf←DF

(
A(f) = (x, x′) ∈ X2 with f(x) = f(x′) and x ̸= x′

)
,

where the probability is taken over the random choice of f and the internal randomness of A.

Recall also the SIS problem, which is as follows.

Definition: Let q,m, n be integers with m ≥ n and B > 0 be some bound. The advantage of a p.p.t. adversary A
against the SISq,n,m,B problem is defined as

AdvSIS(A) := PrA←U(Zm×n
q )

(
A(A) = x ∈ Zm with xT ·A = 0 mod q and 0 < ∥x∥ ≤ B

)
,

where the probability is over the random choice of A and the internal randomness of A.

We will consider the following family F of functions, from {0, 1}m to Zn
q . The functions of F are indexed by a

matrix A ∈ Zm×n
q and are defined as

fA : {0, 1}m → Zn
q

x 7→ xT ·A

The distribution DF over F is obtained by sampling A ∈ Zm×n
q uniformly at random and outputting fA.

1. Assume that B ≥
√
m. Show that if there exists an adversary A against the collision resistance of (F,DF ) with

advantage ε > 0, then there exists an adversary B against the SISq,n,m,B problem with advantage ≥ ε. This
proves that (F,DF ) is a family of collision resistant functions, provided that the SIS problem is hard.

A: Let us assume that there is an adversary A as in the question and construct an adversary B against SIS. The algorithm
B gets as input some uniformly random matrix A ∈ Zm×n

q . It sends to A the function fA. The adversary A outputs a pair
(x, x′) ∈ {0, 1}m × {0, 1}m and B finally outputs the element z = x− x′.

Observe first that the view of A is exactly the same as in the true collision-resistant game. Hence, the probability that A
outputs x, x′ ∈ {0, 1}m with x ̸= x′ and fA(x) = fA(x

′) is AdvF (A) = ε.

The second observation is that when A succeeds in finding a collision, then B succeeds in computing a solution to SIS.
Indeed, since xT · A = fA(x) = fA(x

′) = (x′)T · A (all equalities are modulo q), we have zT · A = 0 mod q. Moreover,
since x ̸= x′, then z ̸= 0. Finally, since x and x′ have coefficients in {0, 1}, then z = x− x′ has coefficients in {−1, 0, 1}.
Hence, we have ∥z∥ ≤

√
m ≤ B, where the last inequality comes from the assumption in the question. We conclude that

z is a solution to SIS with parameters q,m, n and B, and the success probability of B is at least the same as the one of A,
i.e., ε.
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8 QR-factorization (⋆⋆)

The objective of this exercise is to define the QR factorization of a matrix and prove useful properties of this
decomposition, which will be used in exercise 9.

In this exercise, we admit the following result:
Lemma: There exists a polynomial time algorithm that takes as input any matrix B ∈ GLn(R), and outputs two
matrices Q,R ∈ GLn(R) such that

• B = Q ·R;

• Q is orthonormal, i.e., Q−1 = QT ;

• R is upper triangular and has non negative diagonal coefficients.

The pair (Q,R) is called a QR-factorization of the matrix B. We will see below that it is unique. In the rest of this
exercise sheet, it might be useful to remember that an orthonormal matrix Q has the following properties:

• all the rows and columns of the matrix Q have euclidean norm 1;

• the rows (resp. columns) of Q are orthogonal;

• for any vector v it holds that ∥Qv∥ = ∥v∥.

1. Let B ∈ GLn(R). Show that the QR-factorization of B is unique (i.e., show that if B = QR = Q′R′ with Q,Q′

orthonormal and R,R′ upper triangular with positive diagonal coefficients, then Q = Q′ and R = R′) (⋆⋆)

A: Let Q,Q′, and R,R′ be as in the question and such that QR = Q′R′. Rewriting the equality, we have Q̃ = R̃, where
Q̃ = (Q′)−1 ·Q and R̃ = R′ ·R−1.

Observe that the set of orthonormal matrices is stable by inversion and multiplication. Hence Q̃ is orthonormal. Similarly,
the set of upper triangular matrices with positive diagonal coefficients is stable by inversion and multiplication, hence R̃ is
upper triangular with positive diagonal coefficients.

We will show that the intersection of the set of orthonormal matrices with the set of upper triangular matrices with positive
diagonal coefficients only contains In, which will prove the equality Q = Q′ and R = R′.

Let Q̃ = R̃ be a matrix which is both orthonormal and upper-triangular with positive diagonal coefficients. Then
R̃T = Q̃T = Q̃−1 = R̃−1, where we used the fact that the transpose of an orthonormal matrix is its inverse. But
since R̃ is upper triangular, we know that its inverse is also upper-triangular and its transpose is lower-triangular. Since
both are equal, the matrix must be diagonal.

Let us now prove that the diagonal coefficients are all equal to 1. This comes from the fact that the euclidean norm of every
column of an orthonormal matrix is 1. Since this norm is equal to the absolute value of the diagonal coefficient (which
is the only non-zero coefficient in each column), this coefficient must be ±1. Using the fact that R̃ has positive diagonal
coefficients, we conclude that they must be all 1.

We say that a basis B of a lattice is size-reduced if its QR-factorization (Q,R) satisfies the following property:
for all j ≥ i, |ri,j | ≤ ri,i (remember that ri,i > 0). In other words, the diagonal coefficients of R are the largest
coefficients of their rows (in absolute value).

2. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Show that there exists an efficiently computable
unimodular matrix U such that B · U is size-reduced and has QR-factorization (Q,R′) with r′i,i = ri,i for
all i. (⋆⋆)
(You do not have to describe the algorithm very properly, getting the idea is sufficient.)
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A: This transformation, which consist in reducing the non-diagonal coefficients modulo the diagonal coefficients is a very
common operation performed on lattices bases (for instance in the LLL algorithm). It is usually called size-reduction. It
allows in particular to avoid the explosion of the size of the coefficients during the execution of multiple algorithms.

This transformation is done on the columns of R by operations like Cj ← Cj + ⌊ri,j/ri,i⌉Ci for all j ≥ i. This reduces the
non-diagonal coefficients modulo the diagonal coefficients, hence it ensures that all the coefficients on a row are smaller (in
absolute value) than the diagonal coefficient ri,i. These operations are unimodular since they can be inverted by performing
only integer operations, and they preserve the diagonal coefficients, as desired. (One needs to perform these operations in
an appropriate order, otherwise reduced coefficients might be increased again afterwards, but this is doable).

In the rest of this exercise sheet, we call size reduce the polynomial time algorithm that takes as input a
matrix B and returns a sized-reduced matrix B′ := B · U as in the above question, i.e., with ri,i = r′i,i and
L(B′) = L(B).

3. Let B ∈ GLn(R) and (Q,R) be its QR-factorization. Let bj be the column vectors of B. Show that
maxj rj,j ≤ maxj ∥bj∥. If B is size-reduced, show that we also have the inequality maxj ∥bj∥ ≤

√
n ·maxj rj,j

(in other words, the size of the diagonal coefficients of R are a relatively good approximation of the size of the
vectors of B when B is size-reduced). (⋆⋆)
(Hint 1: observe that bj = Q · rj with rj the j-th column of R)
(Hint 2: remember the property that ∥Qv∥ = ∥v∥ for any vector v)

A: Let us first show that maxj rj,j ≤ maxj ∥bj∥. We will actually show the stronger property rj,j ≤ ∥bj∥ for all j’s.
Fix some column index j. Since B = Q · R, then bj = Q · rj , where rj is the j-th column of R. Moreover, since Q is
orthonormal, then ∥bj∥ = ∥rj∥. Finally, note that ∥rj∥ ≤ |rj,j | = rj,j (since the diagonal coefficients are positive), which
concludes the proof of the first inequality.

For the second inequality, we use again the fact that ∥bj∥ = ∥rj∥. A closer look at rj shows that ∥rj∥ ≤
√
j·maxi≤j |ri,j | ≤√

n · maxi≤j ri,i (in the last inequality we used the fact that the basis is size-reduced). From this, we conclude that
∥bj∥ = ∥rj∥ ≤

√
n ·maxi ri,i as desired.

9 Computing a short basis from a short generating set (⋆⋆)

The objective of this exercise is to show that given an arbitrary basis B of a latticeL and a set of n linearly independent
(short) vectors S in L, then one can create a new basis B̃ of L with vectors of length not much larger than the ones
of S. In other words, finding short linearly independent vectors in L is sufficient to obtain a short basis of L.
This exercise uses results from exercise 8.

1. Let B be a basis of a lattice L and S ∈ GLn(R) be a set of n linearly independent vectors in L. Make sure you
remember why there exists an integer matrix X such that S = B ·X . Is X unimodular?

A: Every column vector of S belongs to L, hence is an integer linear combination of the columns of B. Hence S = B ·X
with X integer. The matrix X is unimodular (i.e., has an integral inverse) if and only if S is a basis of L (which might not
be the case here).

2. Let Y be the HNF basis of the lattice L(XT ) and let U be the unimodular matrix such that XT = Y · U . Verify
that B′ = B · UT is a basis of L and that S = B′ · Y T .

A: Since U is unimodular, then so is UT (it has integer coefficients and determinant ±1). Hence, B′ is indeed a basis of L.
Moreover, since S = B ·X and X = UT · Y T , then we indeed have S = (B · UT ) · Y T as desired.

3. Let S = QS · RS be the QR factorization of the matrix S and B′ = QB · RB be the one of B′. Show that
QS = QB and that RS = RB · Y T .
(Hint: use the unicity of the QR-factorization that you proved in exercise 8)
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A: From the equality S = B′ · Y T , we have QSRS = QB · (RB · Y T ). Note that Y is lower triangular with positive
diagonal coefficients (since it is an HNF basis), hence Y T is upper triangular with positive diagonal coefficients, and so is
(RB · Y T ). We conclude by using the unicity of the QR decomposition which we proved in question 1.

Let B̃ = size reduce(B′). Our objective is to show that B̃ is a basis of L(B) which has vectors almost as
short as the ones of S. (You can check from the way we defined it that B̃ can be computed in polynomial time
from B and S).

4. Let (Q̃, R̃) be the QR-factorization of B̃. Show that maxj r̃j,j ≤ maxj ∥sj∥.
(Hint 1: remember from question 2 in exercise 8 that r̃j,j = (RB)j,j when we use the size-reduction algorithm)
(Hint 2: observe that the triangular matrix Y is integral and has positive diagonal coefficients, hence its diagonal
coefficients are ≥ 1.)

A: Since r̃j,j = (RB)j,j , it suffices to prove that maxj(RB)j,j ≤ maxj ∥sj∥.
We have seen in the previous question that RS = RB · Y T . Since all those matrices are upper triangular, then the diagonal
coefficients satisfy (RS)j,j = (RB)j,j · (Y T )j,j for all j’s. But Y T is an integer matrix, hence its diagonal coefficients are
≥ 1. And we conclude that (RB)j,j ≤ (RS)j,j (recall that all those diagonal coefficients are positive).

Finally, we use question 3 to conclude that (RS)j,j ≤ maxj ∥sj∥.

5. Conclude that B̃ is a new basis of L with columns vectors b̃j satisfying maxj ∥b̃j∥ ≤
√
n ·maxj ∥sj∥. In other

words, the vectors of B̃ are almost as short as the linearly independent vectors from S.
(Hint: this question consists mainly in combining what you have seen in this exercise and in exercise 8.)

A: From the definition of B̃ and B′, one can check that L(B̃) = L(B′) = L(B). Let us now show that maxj ∥b̃j∥ ≤
√
n ·

maxj ∥sj∥. Using question 3 from exercise 8 and the fact that B̃ is size reduced, we see that maxj ∥b̃j∥ ≤
√
n ·maxj r̃j,j .

From there, we conclude using the previous question.

10 Ideal lattices (⋆⋆)

Let R be the ring Z[X]/(Xd+1) where d is a power-of-two (so that Xd+1 is irreducible, and K = Q[X]/(Xd+1)
is a field). An ideal in R is a subset I of R such that for all x, y ∈ I , the sum x + y is also in I , and for any x ∈ I
and α ∈ R, the product x · α is in I .

1. Recall that the coefficient embedding

Σ : K → Qd

a =

d−1∑
i=0

aiX
i 7→ (a0, · · · , ad−1)

maps elements of K to vectors in Qd (and elements of R to vectors in Zd). Show that if a ∈ K is non-zero, then
the d vectors Σ(a ·Xi) for i = 0 to d− 1 are linearly independent. (⋆⋆)
(Hint 1: assume you have a Q-linear relation

∑d−1
i=0 yi · Σ(a ·Xi) = 0 with the yi’s in Q and not all zero and

try to obtain a contradiction.)
(Hint 2: Σ is a Q-morphism and is a bijection between K and Qd. Also, K is a field so all non-zero elements
are invertible.)

A: Assume by contradiction that the vectors vi = Σ(a ·Xi) are not linearly independent. Since Q is a field containing the
vi’s, then there must exist a relation involving the vi’s with coefficients in Q, i.e., there exist y0, · · · , yd−1 ∈ Q not all zero
such that

∑
i yi · vi = 0.
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Note that Σ is an additive isomorphism between K = Q[X]/(Xd + 1) and Qd. Hence, applying Σ−1 to the previous
equality yields

∑
i yi · a ·Xi = 0, i.e., a ·

(∑
i yi ·Xi

)
= 0 (here the operations are performed in K = Q[X]/(Xd + 1),

i.e., modulo Xd + 1). Let us write y =
∑

i yi ·Xi ∈ K. Since K is a field and a · y = 0, then either a = 0 or y = 0. We
assumed that a was non-zero, hence y must be zero. But again, because Σ is an isomorphism, this implies that the yi’s are
all 0, which is a contradiction. This shows that the vectors vi’s are indeed linearly independent.

Remember that during the lecture, we have seen that a principal ideal is an ideal of rank d once embedded into
Qd via the canonical embedding. The objective of the next question is to show that this is true for all ideals (not
only the principal ideals).

2. Show that for any non-zero ideal I , the set Σ(I) is a lattice of rank d in Rd. (⋆⋆)

A: We use the equivalent definition of a lattice from tutorial 1. First, observe that Σ(I) is indeed stable by addition and
subtraction (since I is and Σ is an additive morphism). Then, we see that Σ(I) is discrete since it is included in Zd. Finally,
let us exhibit d linearly independent vectors in Σ(I). Since I is non-zero, it must contain a non-zero element a ∈ I .
Moreover, since I is an ideal and Xi ∈ R for all i ≥ 0, then the elements a ·Xi are in I , i.e., the vectors Σ(a ·Xi) are in
Σ(I). We have seen in the previous question that for i = 0 to d−1, those vectors are linearly independent, which concludes
the proof.

3. Let I be an ideal of R and s ∈ I be a non-zero element of I . Show that one can efficiently construct d
elements si (for 1 ≤ i ≤ d) in I such that the vectors Σ(si) are linearly independent and have euclidean norm
∥Σ(si)∥ = ∥Σ(s)∥. (⋆⋆)

A: Let us again take si = s ·Xi−1 for i = 1 to d. Those elements are in I since I is an ideal. Moreover, by definition of
R, one can see that if s =

∑d−1
j=0 xjX

j , then

si+1 = s ·Xi =

d−1∑
j=0

xj ·Xi+j =

d−1∑
k=i

xk−iX
k −

i−1∑
k=0

xk+d−iX
k,

(here, we use the fact that Xℓ = −Xℓ−d in R for d ≤ ℓ < 2d). From this, one can see that Σ(si) is obtain by permuting
the coefficients of Σ(s), and multiplying some of them by −1. This does not change the euclidean norm, i.e., we have
∥Σ(si)∥ = ∥Σ(s)∥ for all i’s.

4. Conclude that in an ideal lattice Σ(I), finding one short vector v ∈ Σ(I) is sufficient to construct a short basis
B of Σ(I) where all vectors bi of B have euclidean norm at most

√
d · ∥v∥.

(Hint: you may want to use the result of question 5 from exercise 9)

A: This is done by combining the previous question with exercise 9. Using the previous question, we construct d linearly
independent vectors in Σ(I) with the same euclidean norm as v. Then, using exercise 9, we use this set of short linearly
independent vectors to create a short basis of I , with a loss of a factor

√
d on the size of the vectors.

Note: in this exercise, we used special properties of the ring R. In more generality, from one short vector
v ∈ Σ(I), one can construct a short basis with vectors of norm at most γK · ∥v∥ for some γK depending on the
number fields K. For most number fields K used in cryptography, this quantity γK is small (and so the intuition
that “one short vector in an ideal is sufficient to have a short basis” is true).

11 Lagrange-Gauss algorithm (⋆ ⋆ ⋆)

Recall the Lagrange-Gauss algorithm: given as input a basis (b1, b2) of a lattice in R2, the algorithm finds x ∈ Z that
minimizes ∥b2 − xb1∥ and replaces b2 by b2 − xb1 (finding x efficiently is done by computing the QR factorization
of the basis B, this step is not important for this exercise). The algorithm then switches b1 and b2 and starts again.
The algorithm stops when no progress is made for two consecutive iterations (which means that we cannot reduce b1
by b2 nor b2 by b1 anymore).
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1. Let b1 and b2 be two non-zero vectors in R2. Show that if ∥b1∥ ≤ ∥b1 + b2∥, then for any α ∈ (1,+∞) it holds
that ∥b1 + b2∥ ≤ ∥b1 + αb2∥. (⋆⋆)

A: Let us consider the function

f : R→ R+

α 7→ ∥b1 + αb2∥

A drawing shows that this is a convex function which has a unique minimum at α0, is decreasing on (−∞, α0] and
increasing on [α0,+∞). Since ∥b1∥ ≤ ∥b1 + b2∥ (i.e., f(0) ≤ f(1)) by assumption, then it must be that α0 ≤ 1.
From this we conclude that f is increasing on [1,+∞) which implies that ∥b1 + b2∥ ≤ ∥b1 + αb2∥ for any α ≥ 1.

2. Show that if the Lagrange-Gauss algorithm terminates, then either b1 or b2 is a shortest non-zero vector of L.
(Hint: you may want to consider a shortest non-zero vector s = x1b1 + x2b2 and write it as s = x1 · (b1 + αb2)
with α = x2/x1 if x1 ̸= 0.) (⋆ ⋆ ⋆)

A: Without loss of generality, assume that ∥b1∥ ≤ ∥b2∥. Let’s use the hint and take s = x1b1 + x2b2 be a shortest non-zero
vector in L (with x1 and x2 integers). Without loss of generality, we can assume that x1, x2 ≥ 0 (otherwise we can multiply
b1 and/or b2 by −1, which does not change their size nor the fact that the algorithm cannot reduce them anymore).

If x1 = 0, then we must have x2 ≥ 1 (since x2 ̸= 0 is a non-negative integer). Then we have ∥b1∥ ≤ ∥b2∥ ≤ ∥x2b2∥ = ∥s∥,
from which we conclude that b1 is a shortest non-zero vector of L.

Similarly, if x2 = 0, then ∥b1∥ ≤ ∥x1b1∥ = ∥s∥ and so b1 is a shortest non-zero vector.

Let us now assume that x1 and x2 are both non-zero. Assume that x1 ≥ x2, then s = x2 · (αb1+ b2), with α = x1/x2 ≥ 1.
Since the algorithm terminated, we know that b2 cannot be reduced anymore be adding to it multiples of b1, which implies
in particular that ∥b2∥ ≤ ∥b2 + b1∥. From the previous question, we conclude that ∥b2 + b1∥ ≤ ∥b2 + αb1∥ ≤ ∥s∥ (since
x2 ≥ 1). We finally conclude that ∥b1∥ ≤ ∥b2∥ ≤ ∥b2 + b1∥ ≤ ∥s∥ as desired.

If x1 ≤ x2, the situation is very similar. We have

∥b1∥ ≤ ∥b1 + b2∥
≤ |x1| · ∥b1 + b2∥
≤ |x1| · ∥b1 + (x2/x1) · b2∥
= ∥s∥.
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