
LATTICE-BASED CRYPTO AMUSEC – MARCH 2024

EXERCISES

1 Solving NTRU over the integers (⋆)

The objective of this exercise is to determine whether h = 402 can be written as h = f · g−1 mod q for q = 1009
and some f, g ∈ Z with |f |, |g| ≤ B := 8. In other words, we want to test whether h is an NTRU instance or not (for
our simplified variant of NTRU over the integers). To solve this question, we will construct the lattice Lh associated
to h, and then use the Lagrange-Gauss algorithm to compute a shortest non-zero vector of this lattice.

Note: recall that the true NTRU assumption should be defined with polynomials instead of integers. Here, we can
efficiently break the NTRU assumption precisely because we are working with integers instead of polynomials of
large degree.

1. Let Bh =

(
1 0
h q

)
∈ Z2×2 andLh = L(Bh) be the lattice spanned by the columns of Bh. Prove that

(
u
v

)
∈ Lh

if and only if h = v · u−1 mod q or u = v = 0 mod q. (Recall that q is prime, so any u not divisible by q is
invertible modulo q.)

A: Let us prove the two implications. First, let
(
u
v

)
∈ Lh. Since Lh is the lattice spanned by Bh, there must exists

x1, x2 ∈ Z such that
(
u
v

)
= x1 ·

(
1
h

)
+ x2 ·

(
0
q

)
=

(
x1

x1 · h+ x2 · q

)
. So x1 = u and x1 · h + x2 · q = v, i.e.,

v = x1 · h = u · h mod q. Assume first that u = 0 mod q, then v = u · h mod q = 0 mod q too, and so we are in the
case u = v = 0 mod q. Otherwise, u = x1 is invertible modulo q (since q is prime), so we can divide by u and we obtain
h = v · u−1 mod q as desired.

In the other direction, let us define x1 = u and x2 = (v − u · h)/q. By what we have seen above, we know that(
u
v

)
= x1 ·

(
1
h

)
+ x2 ·

(
0
q

)
. So to prove that

(
u
v

)
is in Lh, it suffices to prove that both x1 and x2 are integers. We

always have x1 ∈ Z since u ∈ Z. For x2, notice that either v = u = 0 mod q and so v − u · h is divisible by q, or we have

h = v · u−1 and again, v − u · h is divisible by q. In both cases, we conclude that x2 is an integer, and so
(
u
v

)
is in Lh as

desired.

2. Try to compute a shortest possible basis of Lh using the Lagrange-Gauss algorithm (see the video). You can use
a calculator for the computation of square roots, or even SageMath to compute directly the QR-factorization of
your matrices. If this is too hard, skip this question. (⋆ ⋆ ⋆)
(Note: computing QR-factorization is not really important in Lagrange-Gauss algorithm. You can actually run
the algorithm without this, and manipulate only integers and rational numbers. Given two vectors b1 and b2,
you want to reduce b2 as much as possible by adding to it an integer multiple of b1 (i.e., you want to update
b2 ← b2 + kb1 for some k ∈ Z that minimizes the length of the new vector). The optimal choice of k is
k = −

⌊
⟨b1,b2⟩/⟨b1,b1⟩

⌉
. Why? (make a picture))

A: Let b0 and b1 be the two initial basis vectors
(
1
h

)
and

(
0
q

)
. We will try to avoid computing QR-factorization (which

would imply manipulating real numbers and so more difficult computations by hand) of the Lagrange-Gauss algorithm.
The key point is that the QR-factorization in Lagrange-Gauss is used for convenience, but it is not really necessary. The
important step is the reduction step. In this step, we want to update b1 ← b1 + k · b0 and make the new b1 as small as
possible. Removing b0 to b1 will not change the projection of b1 orthogonally to b0. But it can reduce the orthogonal
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projection of b1 onto b0. In other words, we want to find k that minimizes the inner product ⟨b0,b1+ kb0⟩. Let’s develop
the computation

⟨b0,b1 + kb0⟩ = ⟨b0,b1⟩+ k⟨b0,b0⟩
= 402× 1009 + k(1 + 4022)

= 405618 + k × 161605.

Finding an integer k that minimizes this sum is exactly performing the (centered) Euclidean division of −405618 by
161605. Put differently, we can find k by dividing −405618 by 161605 and rounding to the closest integer. We obtain
k = −3.

So we want to update b1 by replacing it by b1 − 3b0 =

(
−3
−197

)
. We then swap b0 and b1, and we start again with our

new vectors b0 =

(
−3
−197

)
and b1 =

(
1
402

)
.

Let’s find k that minimizes

⟨b0,b1 + kb0⟩ = ⟨b0,b1⟩+ k⟨b0,b0⟩ = −79197 + k × 38818.

We have that k = ⌊79197/38818⌉ = 2, and so we update b1 ← b1 + 2b0 =

(
−5
8

)
.

Now we swap b0 and b1 and we start again with b0 =

(
−5
8

)
and b1 =

(
−3
−197

)
. We take k = ⌊−⟨b0,b1⟩/⟨b0,b0⟩⌉ =

⌊1561/89⌉ = 18 and we obtain b1 ← b1 + 18 · b0 =

(
−93
−53

)
.

Let’s swap b1 and b0 and do a last iteration with b0 =

(
−93
−53

)
and b1 =

(
−5
8

)
. This time, we have k = ⌊41/11458⌉ = 0.

So we cannot reduce b1 anymore, we have reached an optimal basis.

We conclude that a shortest basis of Lh is given (in columns) by
(
−5 −93
8 −53

)
.

3. You can check with SageMath that your short basis is indeed a shortest basis, by running the commands

B = Matrix(ZZ,2,[1, 402, 0, 1009])
B_red = B.LLL()
print(B_red.transpose())

in SageMath. Note that SageMath use row convention for matrices, which is why we provided it with a matrix B
which is the transpose of our Bh above, and which is why we transpose the output before printing it.

A: The LLL algorithm from SageMath (version 9.5) produces the same reduced basis
(
−5 −93
8 −53

)
. (Note that the shortest

basis is not unique: we can always permute columns or multiply some column by −1).

4. Answer the initial question: is h an NTRU instance (with B = 8)? If yes, provide some (f, g) ∈ Z2 such that
h = f · g−1 mod q and |f |, |g| ≤ B.

A: The first vector of the reduced basis is
(
−5
8

)
. Using question 1, this means that taking f = 8 and g = −5, we have

h = f · g−1 mod q (we can check that this is indeed the case: 402 = 8 · (−5)−1 mod 1009). Such f and g satisfy
|f |, |g| ≤ B = 8, so h was an NTRU instance.
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2 Some properties of NTRU (⋆⋆)

Let q be a prime integer and B <
√
q−1
2 be an integer. Recall that we defined an NTRU instance as an element

h ∈ Z/qZ that can be written h = f · g−1 mod q for some (f, g) ∈ Z2 with |f |, |g| ≤ B.

Note: Recall that the true NTRU assumption should be defined with polynomials instead of integers. In this exercise,
we use integers for simplicity, but all the properties that we will prove can be adapted to the polynomial setting.

1. Show that if h is chosen uniformly at random in Z/qZ, then the probability that h is an NTRU instance is
≤ (2B+1)2

q (note that this quantity is < 1 since 2B + 1 <
√
q by assumption on B). This means that the smaller

B is compared to
√
q, the less likely it becomes to find an NTRU instance when sampling a random element

in Z/qZ. (Hint: the number of NTRU instances is upper bounded by the number of pairs (f, g) ∈ Z2 with
|f |, |g| ≤ B.)

A: We use the hint: for each NTRU instance h ∈ Z/qZ, there is a pair (f, g) ∈ Z2 such that h = f · g−1 mod q and
|f |, |g| ≤ B, and such pair cannot be used for a different NTRU instance h′ (otherwise h′ = f · g−1 = h mod q). So we
can upper bound the number of NTRU instances in Z/qZ by counting the number of pairs (f, g) ∈ Z2 with |f |, |g| ≤ B.
There are at most 2B + 1 choices for both f and g, so the number of pairs (and the number of NTRU instances) is upper
bounded by (2B + 1)2. The probability to find an NTRU instance when sampling h uniformly at random in Z/qZ is then
|NTRU instances|

|Z/qZ| ≤ (2B+1)2

q .

2. Let h = f · g−1 mod q be an NTRU instance (with |f |, |g| ≤ B). The pair (f, g) is called a trapdoor for h.
Is this trapdoor necessarily unique? I.e., can we find (f ′, g′) ̸= (f, g) such that h = f ′ · (g′)−1 mod q and
|f ′|, |g′| ≤ B? If yes, prove it. If no, find a counter-example. (Hint: what if we multiply f and g by a small
constant?)

A: The trapdoor is never unique, indeed, we can always multiply f and g by −1, and we still have (−f) · (−g)−1 =
f · g−1 = h mod q and | − f | = |f | ≤ B and | − g| = |g| ≤ B. More generally, if |f | and |g| are smaller than B/2 for
instance, one can multiply f and g by 2 (or −2) to obtain yet another valid trapdoor.

Recall that, to an NTRU instance h = f · g−1, we can associate the basis Bh =

(
1 0
h q

)
and the lattice

Lh = L(Bh) which is spanned by the columns of Bh. Recall also that, under the NTRU assumption, computing
a short basis of Lh from Bh is computationally hard. The objective of the next questions is to show that if we
know the trapdoor (f, g) in addition to the basis Bh, then computing a short basis of Lh becomes easy.

3. Let x = (x1, x2) ̸= (0, 0) and y = (y1, y2) be any vectors of Z2. Show that one can efficiently compute k ∈ Z
such that ∥y + kx∥ ≤

√
∥x∥2/4 + |x1y2 − x2y1|2/∥x∥2. (⋆ ⋆ ⋆)

(Hint: make a picture. Let ỹ = y + kx be the vector you are looking for. Observe that the projection of ỹ
orthogonally to x always has euclidean norm |x1y2−x2y1|/∥x∥ (this does not depend on the choice of k). Then
observe that you can choose k ∈ Z such that the orthogonal projection of ỹ onto SpanR(x) has euclidean norm
≤ ∥x∥/2. Conclude using the Pythagorean theorem.)

A: Finding such a k is know as size-reduction of y by x. This is the key step of the Lagrange-Gauss algorithm for reducing
a basis in dimension 2 (and also a key step for the LLL algorithm in larger dimension).

As explained in the hint, adding multiples of x to y will not change the projection of y orthogonally to x, but it can
reduce the orthogonal projection of y onto x, and this is this projection that we will try to minimize. More formally, let us
decompose y = y1 + y2 with ⟨y1,x⟩ = 0 and y2 = α · x for some α ∈ R. We see that y + kx = y1 + (α+ k)x. By the
Pythagorean theorem, since y1 and x are orthogonal, we obtain that ∥y + kx∥2 = ∥y1∥2 + (α+ k)2 · ∥x∥2.

The only parameter we can choose in the equation above is k, which has to be an integer. If we want to minimize ∥y+kx∥2,
we must take k = ⌊−α⌉, which ensures that the quantity (α+ k) is in [−1/2, 1/2]. If we pick such a k, then we obtain that
∥y + kx∥2 ≤ ∥y1∥2 + 1/4 · ∥x∥2.
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Let us now estimate ∥y1∥. We know that det(x,y) = det(x,y1 + αx) = det(x,y1) + α det(x,x) by linearity of
the determinant. But det(x,x) = 0 and |det(x,y1)| = ∥x∥ · ∥y1∥ since x and y1 are orthogonal. We conclude that
∥y1∥ = |det(x,y)|/∥x∥ = |x1y2 − x2y1|/∥x∥. From this, we obtain the upper bound

∥y + kx∥2 ≤ ∥y1∥2 + 1/4 · ∥x∥2 ≤ |x1y2 − x2y1|2/∥x∥2 + 1/4 · ∥x∥2

as desired.

As a last remark, it remains to prove that k can be efficiently computed. Since k = ⌊−α⌉, it suffices to show that α can
be efficiently computed. But α is simply ⟨x,y⟩

⟨x,x⟩ (you can check that y − αx is orthogonal to x), which can be efficiently
computed.

4. From now on, we assume that f and g are coprime and that B/2 ≤ |f |, |g| ≤ B. Let u, v ∈ Z be Bezout
coefficients, such that uf + vg = 1. Show that, given (u, v) and the pair (f, g), one can compute (F,G) ∈ Z2

such that fG− gF = q and |F |, |G| ≤
√
B2/2 + 2(q/B)2. (⋆⋆)

(Hint: you may want to first compute any (F̃ , G̃) from (u, v) such that fG̃− gF̃ = q. Then try to reduce (F̃ , G̃)
by adding a good multiple of (g, f) and using the previous question.)

A: Let us define F̃ = −q ·v and G̃ = q ·u. Then we have fG̃−gF̃ = q as desired. Now, we call x = (f, g) and y = (F̃ , G̃),

and we apply the previous question to compute an integer k such that ∥y + kx∥ ≤
√
∥x∥2/4 + |fG̃− gF̃ |2/∥x∥2. Note

that by choice of F̃ and G̃, we have |fG̃− gF̃ | = q. Moreover, by assumption, we know that B/2 ≤ |f |, |g| ≤ B, which
implies that B2/2 ≤ ∥x∥2 ≤ 2 ·B2. Hence, we obtain that

∥y + kx∥ ≤
√
B2/2 + 2q2/B2.

Let us define F = F̃ + k · f and G = G̃ + k · g the coefficients of the vector y + kx. Then |F |, |G| ≤ ∥y + kx∥ ≤√
B2/2 + 2(q/B)2.

It remains to prove that f ·G− g · F = q. This comes from the fact that

f ·G− g · F = f · (G̃+ k · g)− g · (F̃ + k · f)
= f · G̃− g · F̃ + k · (fg − gf) = q.

5. Show that
(
g
f

)
∈ Lh and that

(
G
F

)
∈ Lh.

A: Recall from Exercice 1 (question 1), that
(
u
v

)
∈ Lh if and only if h = v · u−1 mod q or u = v = 0 mod q. For

(
g
f

)
,

we know by definition of f , g and h that h = f · g−1 mod q, so
(
g
f

)
∈ Lh.

For
(
G
F

)
∈ Lh, recall that f ·G−g ·F = q, so we have g ·F = f ·G mod q, i.e., F = f ·g−1 ·G mod q = h ·G mod q. If

G = 0 mod q, then necessarily we also have F = 0 mod q, and so
(
G
F

)
∈ Lh. Otherwise, G must be invertible modulo q

(since q is prime), and so we can rewrite the equation F ·G−1 = h mod q, from which we conclude again that
(
G
F

)
∈ Lh.

6. Reciprocally, show that
(
1
h

)
and

(
0
q

)
can be written as integer linear combinations of

(
g
f

)
and

(
G
F

)
. (⋆⋆)

(Hint: you may want to start by
(
0
q

)
, and also prove that

(
q
0

)
is an integer combination of

(
g
f

)
and

(
G
F

)
,

before moving on to
(
1
h

)
.)
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A: Let us start with the vector
(
0
q

)
. We have

(
0
q

)
= G ·

(
g
f

)
− g ·

(
G
F

)
, with G and g integers (here we use the equation

f ·G− g · F = q).

Similarly, we can also prove that the vector
(
q
0

)
= −F ·

(
g
f

)
+ f ·

(
G
F

)
is an integer linear combination of the vectors(

g
f

)
and

(
G
F

)
.

So it remains to prove that
(
1
h

)
is an integer linear combination of

(
g
f

)
,
(
G
F

)
,
(
q
0

)
and

(
0
q

)
. Let g̃, r ∈ Z be such that

gg̃ = 1 + q · r (such elements exist because g is invertible modulo q). Then(
1
h

)
= g̃ ·

(
g
f

)
− r

(
q
0

)
+ r′

(
0
q

)
,

where r′ = (h− f · g̃)/q. Note that f · g̃ = f · g−1 mod q = h mod q, so q divides (h− f · g̃) and r′ is an integer.

7. Conclude that
(
g G
f F

)
is a basis of Lh, and that if B =

√
q/2, then this basis has vectors of euclidean norm

≤ 5
√
q.

A: We have seen that the vectors
(
g
f

)
and

(
G
F

)
are in Lh and that any vector of Lh can be written as an integer linear

combination of these vectors, so they form a basis of Lh. By assumption, the euclidean norm of
(
g
f

)
is upper bounded by

√
2B ≤ 5

√
q. For

(
G
F

)
, we have seen that |F |, |G| ≤

√
B2/2 + 2(q/B)2 ≤

√
q/8 + 2 · (2√q)2 ≤

√
q · (1/8 + 8) ≤

3
√
q. Hence, the euclidean norm of the vector

(
G
F

)
is upper bounded by

√
2 · 3√q ≤ 5

√
q.

3 Lattice bases (⋆)

The objective of this exercise is to prove a bunch of properties regarding bases of lattices. Throughout this exercise,
the matrix B (or the matrices B1, B2) are invertible matrices in GLn(R) for some dimension n > 0. Recall that we
write L(B) for the lattice spanned by the columns of the matrix B.

1. Let B1, B2 ∈ GLn(R). Show that L(B1) = L(B2) if and only if B1 = B2 · U for some U ∈ Zn×n such that
det(U) = ±1. Such a matrix U is called unimodular. It is an invertible integer matrix whose inverse is also an
integer matrix.

A: Assume first that L(B1) = L(B2). Then, every column of B1 belongs to L(B1) = L(B2). Hence, by definition of the
lattice L(B2) (integer linear combinations of the columns of B2), we know that there exists an integer square matrix U1

such that B1 = B2 · U1. Since B1 and B2 are both invertible, then U1 is also invertible (over R). Our objective is to show
that U1 is invertible over Z (i.e., it’s inverse is also an integer matrix). By a similar argument, we know that there exist an
invertible (over R) integer matrix U2 such that B2 = B1 · U2.

Combining both equations, we obtain B1 = B2 · U1 = B1 · U2 · U1. Since B1 is invertible, we can simplify this into
In = U2 · U1. Since U1 and U2 are invertible over R, their inverse is unique and we conclude that U−1

1 = U2 is an integer
matrix as desired.

To conclude, observe that since U1 and U2 are integer matrices, then their determinant is also an integer. But we have
1 = det(In) = det(U1 · U2) = det(U1) · det(U2). Hence, the only possibility for det(U1) is 1 or −1 (these are the only
invertible elements in Z).

In the other direction, assume that B1 = B2 · U with U integer and det(U) = ±1. Then, U is invertible over R and its
inverse matrix U−1 has integer coefficients (recall that U−1 = 1/ det(U) · adj(U) where the adjugate matrix adj(U) is
integral since U is).
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Since U is integral, then by definition every column of B1 = B2 · U is in the lattice spanned by B2. Hence we have
L(B1) ⊆ L(B2). Since U−1 is also integral, then every column of B2 = B1 · U−1 is in the lattice spanned by B1, and we
conclude that L(B2) ⊆ L(B1).

2. Let B1 and B2 be two bases of the same lattice L. Prove that | det(B1)| = |det(B2)|.
This shows that the quantity |det(B)| does not depend on the choice of the basis B of L, but only on the lattice
L. It is usually called the volume or the determinant of the lattice L, and written vol(L) or det(L).

A: We have seen in the previous questions that if L(B1) = L(B2), then B1 = B2 ·U for some matrix U with det(U) = ±1.
Taking the absolute value of the determinant of this equation proves that |det(B1)| = |det(B2)|.

3. Let L1 and L2 be two lattices of rank n. Show that if L1 ⊆ L2, then det(L1) = k · det(L2) for some integer
k > 0. This integer k is called the index of L1 inside L2 and is written [L2 : L1].

A: Let B1 be a basis of L1 and B2 be a basis of L2. Since L1 ⊆ L2, then every column of B1 is in L(B2), i.e., there
is an integer matrix X such that B1 = B2 · X . Taking the determinant, we have det(B1) = det(B2) · det(X). Hence,
k = |det(X)| and k is indeed an integer since X has integer coefficients (and k is non-zero since B1 and B2 are both
invertible).

The determinant of a lattice is an important quantity, mostly useful in cryptography thanks to Minkowski’s first
theorem. This theorem states that in any lattice L of dimension n, there exists a non-zero vector v ∈ L such that
∥v∥ ≤

√
n · det(L)1/n.

4. Show that the upper bound in Minkowski’s first theorem can be quite loose for some lattices: construct a lattice
with det(L) = 1 and which contains a non-zero vector v whose euclidean norm is arbitrarily close to 0.

A: Take ε > 0 and define L to be the lattice with basis b1 = (ε, 0)T and b2 = (0, ε−1)T . Then det(L) = 1 but L contains
the vector b1 whose norm can be arbitrarily close to 0.

The objective of the next questions is to observe that when dealing with lattices, a maximal set of independent
vectors is not always a basis, and a minimal set of generating vectors is also not always a basis (which differs
from what we are used to in vector spaces).

5. Exhibit a family of n linearly independent vectors in Zn which do not form a Z-basis of Zn.

A: One example is the family bi = (0, . . . , 0, 2, 0, . . . , 0) with a 2 in i-th position, for i = 1 to n. Those vectors are linearly
independent but they generate the lattice (2Z)n, which is included strictly in Zn. Note that one cannot add a vector to
this family of vectors and still have independent vectors (because independence is defined over R, where things work as
expected: the maximal size of an independent set of vectors in Rn is n).

6. Exhibit a family of n+ 1 vectors generating Zn such that it is not possible to remove any vector from this set to
obtain a Z-basis of Zn.

A: Take b0 = (2, 0, . . . , 0), b1 = (3, 0, . . . , 0) and bi = (0, . . . , 0, 1, 0, . . . , 0) with a i at the i-th position for i = 2 to n.
Then (bi)0≤i≤n generates Zn. This is because 2 and 3 are coprime, hence one can find an integer linear combination of b1
and b2 with a 1 in its first coordinate (just take b1 − b0 = (1, 0, . . . , 0)).

However, one can check that removing b0 or b1 from the list of generator does not generate Zn anymore: the first coordinate
will always be a multiple of 2 or 3. Similarly, we cannot remove one of the bi for i ≥ 2 since the i-th coordinate would
always be 0.
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